RDFReactor — From Ontologies
to Programmatic Data Access

Max Volkel
Institute AIFB
Karlsruhe, Germany

voelkel@aifb.uni-karlsruhe.de

ABSTRACT

Developers familiar with object oriented programming lan-
guages have to make a paradigm shift in order to produce
and manage data usable on the Semantic Web (e. g. RDF).
In this paper we describe the tool RDFReactor which trans-
forms a given ontology in RDF Schema into a familiar, dy-
namic, object-oriented Java API — at the push of a button.
Developers then are able to interact with java instances,
thus allowing them to stay in their own world. The gener-
ated proxy objects contain no state and delegate all method
calls to RDF model updates and queries. RDFReactor po-
tentially turns every Java developer into a Semantic Web
application developer and enables them to use RDF cor-
rectly, efficiently and effectively without even knowing it.
It is downloadable (GNU LGPL) at http://rdfreactor.

ontoware.org.

1. INTRODUCTION

A key promise of the Semantic Web is that of global inter-
operability, i.e. applications developed independent of each
other will be able to read and use each others data. Ontolo-
gies are key enablers for the Semantic Web, they describe
the semantics of data to enable ad-hoc interoperability. The
Semantic Web is already rich in ontologies, but poor in ap-
plications that use semantic data. Why? Some evidence can
be found by using Google queries which e.g. show millions
of hits for “Java developer” and only hundred thousands of
hits for queries like “ontology engineer”. This might indicate
a shortage of ontology engineers, who currently can also be
seen as developers for ontology based applications.

Reuse of existing ontologies is crucial for efficiently and ef-
fectively reaching semantic interoperability on a global scale.
Unfortunately developers familiar with object oriented pro-
gramming languages have to make a paradigm shift in order
to produce data usable on the Semantic Web (e.g. RDFEI).
This means, all generated RDF instance data should be de-
scribed by terms of an ontology. The task to make an exist-
ing Java application interoperable with the Semantic Web is
a difficult task, as developers have to learn at the same time
the RDF data model, RDF Schema syntax and semantics
and an API for model manipulation.

The main contribution of our work is to leverage the power
and quantity of Java developers and Java tools for the Se-

"ttp://www.w3.org/RDF/

Copyright is held by the author.

Schema | Instances

RDF Schema RDF Data

|

£ Runtime

/

= Code
2= Generator

Java Stateless
Classes Java Instances

\/

Figure 1: Mapping the two worlds

Java | RDF

mantic Web by significantly reducing this burden. We intro-
duce RDFReactor, a new open-source tool, which transforms
a given RDF Schema ontology into an object-oriented Java
API with domain-centric methods like paper.setAuthor(
Author a) instead of model.addTriple(...). This enables
developers to interact with java proxy objects, thus allow-
ing them to stay in their own world and at the same time
to make use of the advantages RDF offers.

2. OVERVIEW

We distinguish two phases in application development:
API generation followed by traditional development. An
overview of the whole system can be found in Fig. [} An
RDF Schema (or an OWL ontology) is run once through
the RDFReactor code generator which generates a number
of type-safe, domain-specific Java classes. At runtime, in-
stanced of these classes act as stateless proxies on the RDF
model.

In the remainder of this section we will first explain the
features of the generated API and explain how these fea-
tures were realised. Then, we explain features of the code
generator and explain how those were realised.

2.1 Runtime Features

In this section we explain the mapping from the object-
oriented Java world to the triple-oriented RDF world. Ba-
sically, we map RDFS (or OWL) classes to Java classes
and RDF properties to Java properties, accessed through
get () and set(value) methods. This makes RDFReac-
tor APIs most suitable to be used for instance manipulation,

http://rdfreactor.ontoware.org
http://rdfreactor.ontoware.org
http://www.w3.org/RDF/

e.g. in user interfaces on a desktop or web user interfaces.
Other libraries, such as SemVersiorEl, also successfully used
RDFReactor for internal RDF data model manipulation.
Additionally, every class generated by RDFReactor offers
the methods Type[] getAll(), add(Type x) and remove(
Type x), do deal with the multi-value nature of RDF prop-
erties. In fact, get () throws an exception if multiple values
are present in the RDF model. The set-Method internally
removes all values and then adds the given value.

Note that all API methods are type-safe. A developer
using an RDFReactor generated API thus has full support
from the Java compiler and it’s IDE, e.g. auto-completion
of method names.

At runtime, instances of the Java classes model resources
in the RDF model. In the constructor, a reference to an
RDF model and an identifier has to be supplied. We allow
both for URIs or blank nodes to act as identifiers. There
are no limitations with respect to blank node handling. For
the RDF model manipulation, we use an abstraction layer,
RDFgG(ﬂ which has adaptors to Jenal5], Sesame, YARS
and others.

One of the key advantages of using an RDFReactor gen-
erated API is synchronicity: Each method set or add re-
quests is translated into an add statement operation, each
get or getAll method call is executed as a query to the RDF
model. All java instances are completely stateless, they act
like proxies for RDF resources. Concurrent usage of the
same data, e.g. access as a web portal, is also no problem.

Additionally, the API offers the following set of opera-
tions:

SPARQL: The Bridge class supplies a method to perform
arbitrary SPARQL SELECT queries and return the
result as RDFReactor instances, as requested.

List support: We offer methods to transform rdf:List con-
structs to Java lists and vice vers.

Map support: Each class generated by RDFReactor ad-
ditionally implements the Java Collections Map in-
terface, mapping properties to keys and the objects
of RDF statements to Map entry values. Again, all
calls are transparently translated into triple update
and query operations, no state is duplicated at any
time.

Inverse properties: As properties in RDF often hold ref-
erences to other objects it makes a lot of sense to query
also in the other direction. Instead of asking “whom
do I know?” it is also intersting to find out “who knows
me?” on the level of RDF resources. Thus the gener-
ated classes offer methods to get a list of backwards
related entities. For each property p relating instances
of class A with class B, the class A has a method to
get, set, add and remove values as explained above.
The class B has a method Type[] getp_Inverse() to
get all instances of class A related to B via p.

2an RDF and ontology versioning system, see http://
semversion.ontoware.org
“http://rdf2go.ontoware.org

Typing: The Java keyword instanceof cannot reflect schema
or type changes due to the static nature of the Java
language. As it is a keyword it can not even be over-
written with advanced method such as dynamic prox-
ies. Instead, the method Class[] getAllType() re-
turns a list of all RDF or OWL classes this instance of
currently type of.

Cardinality constrains: OWL cardinality constraints are
reflected in the API: add raises a CardinalityExcep-
tion if more elements than allowed are added. Sim-
ilarly, remove raises an exception if a min cardinal-
ity constrains would be violated. The cardinality con-
straints are modelled statically in the generate code
and do not reflect schema changes. This allows to gen-
erate methods that raise no exceptions for properties
without constraints. Such methods are easier to use
for developers.

Triple Store Independent. All generated APIs access RDF
models only through RDF2Go, thus the generated API
can be ported without changes to another triple store.

2.2 Code Generator Features

RDFReactor translates an ontology into a number of domain-
specific classes, which are explained in the previous sections.
In this section, we explain features of the code generator.

The developer creates or, preferably, reuses an RDF Schema
or OWL ontology as the backbone of the application. We
map ontology classes to domain-specific Java classes and re-
lations to properties, as explained in Sec. 7?7 and Sec. 77.
The code generate employs a number of features to help
an ordinary Java developer to become a semantic web ade-
veloper (without actually having her to explain anything
beyond URISs in most cases):

e The Java classes and methods are in most cases named
according to usual Java coding conventions, even if no
labels are present in the ontology.

e RDFReactor works both with RDF Schemas and OWL
ontologies, respecting the ontology semantics (i. e. rea-
soning is used).

e After code generation, the API is ready to use. It’s
fully implemented and documented (JavaDoc).

e Multiple inheritance is resolved, a subclass tree is ex-
tracted to produce more readable code.

e Multiple domains and ranges are handled in an appro-
priate, type-safe manner.

e Changes to the generated source code are easy: Most
methods are implemented with a single line of code.
If frequent schema changes are expected, customized
subclasses should be used, so that changes don’t get
lost when the code generation is triggered again.

e Cardinality constrains are reflected in the API and
checked at runtime.

e The generated source code style is easy to change, as
it is generated with a template language.

In the next section we explain how these features were de-
signed.

http://semversion.ontoware.org
http://semversion.ontoware.org
http://rdf2go.ontoware.org

3. RUNTIME DESIGN

A key of the runtime design is a subclass hierarchy mod-
elling ontological layering in Java. The lowest layer mediates
between RDF’s graph model and object-oriented concepts.
We now explain the layering in detail:

OO-Graph mapping layer: hand-written methods to trans-

late from object-oriented method calls into triple-centric
methods.

ReactorBase is the key to understand RDFReactor
concepts. It acts as a generic RDF resource, with-
out any RDF or RDFS semantics beyond the triple
model. Each ReactorBaselmpl instance knows it’s URI
(or blank node) and the RDFS Class it represents in
the API.

Each generated Java class directly or indirectly in-
herits from ReactorBaselmpl, which is responsible for
mapping the object oriented Java view to the triple-
oriented model of RDF. ReactorBase instances map
to RDF resources and offers methods to manipulate
triples of the form (i, *, *), where 4 is then instance
identifier, a blank node or a URI. E.g. when the user
calls setPhoneNumber(123) on an instance of Per-
son, this call is delegated to the ReactorBase method
set (PHONENUMBER, 123), where PHONENUMBER
is a URI. In this example, ReactorBase converts 123
into an RDF literal of type zsd:int.

Multiple ReactorBase instances looking at the same re-
source can have different RDFS Classes, of course, al-
lowing for different perspectives on the same resource.

The RDF generated by such method calls is always
compliant—or rather: described—by the ontology the
API was generated from. This ensures that the RDF
data is usable by other tools (even concurrently) as
well.

ReactorBase also implements a Map<URI, Object> in-
terface, allowing all RDFReactor instances to be used
additionally in this generic fashion.

Ontology language layer: on this and lower layers, URIs
have semantics. In our case, RDF, RDFS, OWL and
XSD are considered. Classes like Resource and Class
offer methods to access typical RDF(S) properties such

as labels (rdfs:label), comments (rdfs:comment), types

(rdf:type) and subclasses (rdfs:subClass0f). These
classes have been generated by applying the Code Gen-
erator to the RDF Schema definitions of RDFS and
OWL. In fact, the auto-generated methods for the
property type in the class Resource are used as a sub-
stitute to Java’s instanceof, as explained above.

Note how RDFReactor can operate on RDFS’s class
and property structures without running into any meta-
modelling issues. This simply due to the fact that all
RDFS and OWL semantics are handled in the under-
lying store.

Domain layer: this layer contains the code generated from
a particular RDFS or OWL ontology, e.g. Person or
Image. They inherit from the class Class of the layer
above.

In order to illustrate the layered design, we give now some
examples. We could use the ReactorBase implementation
directly and invoke it as follows:

1: URI FoafPhone =

new URI("http://xmlns.com/foaf/0.1/phone");
2: URI FoafKnows =

new URI("http://xmlns.com/foaf/0.1/knows");
3: ReactorBase heiko =

new ReactorBaseImpl("urn://heiko");
4: ReactorBase max =

new ReactorBaseImpl("urn://max");

5: heiko.add(FoafPhone, 123);
6: heiko.add(FoafKnows, max);

7: int i = (int) heiko.get(FoafPhone, Integer.class);
8: Person[] heikosFriends =
(Person[]) heiko.getAll(FoafKnows, Person.class);

The lines 5 and 6 immediately results in the triples { <urn://heiko>
foaf :phone "123"(xsd:int)} and { <urn://heiko> foaf:knows
<urn://max>} to be added to the model. This is nice, but RD-
FReactor can do better by generating type-safe domain-specific
classes (which is assumed in line 8). Let’s assume we generated
a class Person from a FOAF-like ontology [1]. It will look as
follows:

class Person extends ReactorBaseImpl

public void addPhone(int value) {
add(FoafPhone, value);
}

/*x

* @throws RDFDataException

* if multiple values found

*/

public int getPhone() throws RDFDataException
return (int) get(FoafPhone);

}

public void addKnows(Person p) {
add(FoafKnows, p);
}

public Person[] getAllKnows() {
return (Person[]) getAll(FoafKnows, Person.class);

}

As you can see, the domain specific classes are merely a customis-
ing ReactorBaselmpl by hiding some type conversions. This re-
flects well the strategy employed in the design of RDFReactor:
We separate the concern of graph-OO-mapping from the concern
of mapping loosely-typed-RDF from strictly-typed Java. The
domain-specific class can be used by ordinary Java developers
without any knowledge about RDF as follows:

Person p = new Person("urn://heiko");
p.setAge(29);

int i = p.getAge();

Person[] heikosFriends = heiko.getAllKnows();

We currently have support for the following datatypes as val-
ues in domain specific methods (get, set, ...): all ReactorBase
instances, URI, URL, String, DatatypeLiteral, LanguageTagLit-
eral. Additionally with correct XSD mapping: Integer, Long.

JMapped

name : String
mappedTo: URI
comment : String

!

JPackage

Name : String

inverse

A
1 {1
JCfassjﬂ&'JProperty

Yw maxCard : int

inverse propertiesd minCard : int

*

superclasses

Figure 2: JModel - the internal ontology model

4. CODE GENERATOR DESIGN

First, we translate the ontology into an internal model (JModel).
The internal model (c.f. Fig. [2)) looks as follows:

JModel models a set of JPackages. It is mapped to an RDF
model.

JPackage models a package in Java, e. g.
Yorg.ontoware.rdfreactor.foaf”". Modelling this explicitly
allows to map different RDF namespaces to different Java
packages. A JPackage has a name and a list of classes.

JClass has a name (e.g. "Person”), a URI it is mapped to, a
comment, a list of properties, a list of inverse properties
and a list of superclasses.

JProperty has a name (e.g. “phone”’), a URI it is mapped
to, a comment, a list of types (JClasses), a minimum and
maximum cardinality and an inverse JProperty.

The JModel is very expressive and allows many things that are
illegal in Java, e.g. class cycles, multiple inheritance and prop-
erties with no type. Algorithms to make the JModel stricter are
successively applied, allowing for reuse regardless of source ontol-
ogy language. Finally, the JModel is strict enough to generate
source code with the help of a template processor. In the re-
mainder of this section we explain the code generation process
in detail. In the future, we consider replacing the JModel with
the Ecore framework from Eclipse or other works based on the
Ontology Definition Metamodel (2.

Load built-ins. We initialise a JModel with the built-in map-
pings of URIs to the Java classes of the schema layer (c.f.
Sec. . Of course, the default model is different for RDFS
and OWL. A new JPackage for the API to be generated is
created and added to the JModel.

Inferencing. RDFS and OWL inferencing is applied to the source
ontology. All handling of ontology language semantics is
thus delegated to existing implementations.

Inspect Classes. For each ontology class oc, we distinguish three
cases. First, if it is an OWL restriction and thus not a real
class: ignore it. Second, if the JModel already contains a
JClass mapped to the URI of oc: ignore it as well. Other-
wise we add a new JClass to the JPackage. In order to find
a legal Java class name, a number of little things has to be
done, see Sec. @

If the ontology class has an rdfs:comment it is copied over in
the JModel. Later is is integrated with the auto-generated
JavaDoc of the class.

Multiple Inheritance. Inheritance is tackled in two steps: First,
each superclass relation in the ontology is mapped to a su-
perclass relation in the JModel. Second, the inheritance
hierarchy is flattened, to remove multiple inheritance, as
described in Sec. 2]

Inspect Properties. For each property op in the ontology: In
the JModel, we look up the JClasses mapped to the IDs
(URI or blank node) of op’s domains. For each domain d
we generate a JProperty jp and attach it to the respective

JClass. The JProperty is named and commented with the
same strategy as classes (c.f. Sec. .

Then, for each range relation of the property op, we add the
corresponding JClass as a type of the property jp. Multiple
types for a property are handled in later steps of the code
generation.

Inverse Properties. For each JProperty jp with domain d in
the JModel, we add inverse properties: For each JClass r
in the range of jp we add an inverse property ’jp_Inverse’
to r with the range d.

Source Code Generation. Finally the JModel is suitable for
a template-based code generation. Emitting source code
with a template language allows better control over the
generated syntax, especially indentation. We initialise a
VelocityEI template and use it to generate the source code
of a Java class for each JClass in the JModel. The template
has about 300 lines of codes and is described in detail in

Sec. {31

The overall process of code generation can be summarised as
transformation from source ontology language into an internal
representation (JModel), stepwise simplification of the internal
model until a template-based code generation approach can emit
the final source code. In the remainder of this section we explain
in detail issues regarding naming, multiple inheritance and the
template.

4.1 Naming

In order to name a class or a property adequately, a number of
strategies are used:

First, a raw name is created by looking at the rdfs:label in the
schema (e.g. 'IM-account’). If no label was found, the part of the
URI after the fragment identifier ("#’) is used (e. g. ’imAccount’).
If no such delimiter is present in the URI, the part after the last
slash (’/’) is used. This name is then transformed into a legal Java
identifier as follows: Spaces and underscore are removed. Then all
non-alphanumeric letters are converted into an underscore (e.g.
IM_account’). If the resulting name starts with a number, the
name is prefixed with ’a_’. Finally, the first letter is capitalised,
to reflect common Java naming conventions (e.g. 'ImAccount’).

The resulting name is compared with a list of taken names, to
avoid name clashes. If such a conflict occurs, a longer name is
created from the URI. If the part before the last number sign
or slash is known, the correct namespace prefix is used (e.g.
“foaf’, resulting in ’FoaflmAccount’). Otherwise the last part of
the URI consisting only of letters is used (e.g. from the URI
*http://xmlns.com/wordnet/1.6/° the prefix 'wordnet’ would be
extracted, as ’1.6’ is not consisting only of letters, resulting in
"WordnetImAccount’). If that name is also taken already in the
schema at hand, a fallback to transform the full URI into a legal
Java identifier is used. As it turns out, naming is less simple then
one might think. For properties, removing leading parts such as
’is 7, ’has 7, ’is_’, ’has_’ leads to methods names better reflecting
common Java API design.

4.2 Inheritance Flattening

For each class in the JModel the following cases have to be
considered:

e If the class has no superclass, the root class of the JModel
(either rdfs:Class or owl:Class) is set.

e Classes with exactly one superclass are left unchanged.

e If multiple superclasses are found, the superclass that has
itself most superclasses is used. Note that setting the JModel
root class for all classes as the superclass would result in
no loss of functionality in the generated API. The whole
point of modelling ontology subclass relations at least par-
tially in Java is the desire to generate code that is simpler
to change manually later on. There are other options to
extract a strict tree from the inheritance graph in the on-
tology, though.

4Jakarta Velocity, a template engine. See http://jakarta.
apache.org/velocity/

http://jakarta.apache.org/velocity/
http://jakarta.apache.org/velocity/

4.3 Template

The template has to take care of a number of things in order to
produce a good source code. In particular the template generates
the following:

Minimal Header. A package declaration, import statements for
basic RDF classes and conditional imports, e. g. for excep-
tions. Only classes that are used are imported, to avoid
having IDEs such as Eclipse to bug the user with warnings.

Binding. Each class is bound to an specific ontology class with
a URI constant.

Documentation. An overview comment that explains which
properties are handled in this class is also added to the
JavaDoc. Each class and method are also documented.

Constants. All URIs that are used in the body of the class are
defined as constants.

Constructors. A number of constructors allowing for instances
to be created from a URI, URL, blank node or no identifier
(a random URI will be used). Some protected constructors
are also generated, to allow constructor delegation up to
the top (ReactorBaselmpl).

Properties. For each property, methods are generated according
to cardinality constraints and number of given ranges. If
no cardinality constraints have been state or the maximum
cardinality is exactly 1, a get and set methods are created.
A remove method, encoding cardinality constraints in the
implementation as needed (e.g. ’'remove(value, 3), it a
minimum of three elements must be guarded), is generated.
If the maximum cardinality is greater than 1 or not set, add
and getAll methods are generated.

Multiple ranges result in multiple set or add methods with
the same name but different types, exploiting method over-
loading. For get or getAll methods, it is not possible to have
the same method with different return types. Thus we dis-
ambiguate method names with a postfix of *_asTYPE’ to
indicate the desired return type.

Lean code. All generated methods are implemented (typically
in single line of code, thanks to the inheritance), docu-
mented (in JavaDoc) and throw appropriate exceptions (as
documented in the JavaDoc) if things go wrong.

Queries. A method to return all instances of the generated class
for a given model.

Inverse Properties. For each inverse property of the class, get
and add methods.

4.4 Implementation Details

First we wrote the ReactorBaseImpl class and hand-coded es-
sential parts of the schema layer (c.f. Sec. . Then we wrote
the code generator, making use of the schema layer classes (e.g.
getLabel()). Then we ran the preliminary code generator on
the RDF Schema of RDF Schema to get a better (more features,
better documented) schema layer. The new schema layer classes
were then used to enhance the code generator. This way of boot-
strapping seems well suited for other programming languages as
well.

As a second remark, the current handling of primitive data
types works only thanks to the new feature autoboxing and -
unboxing introduced in Java 1.5. Autoboxing converts seamlessly
from primitive types and their corresponding Classes, e.g. int
and Integer.class.

5. MODEL MANIPULATION DESIGN

In order to stay independent of a specific triple store and be
able to offer RDFReactor APIs on top of a number of stores,
we developed the abstraction layer RDF2Go. RDFoGois a sim-
ple wrapper over Java triple (and qua stores, similar in spirit
of Jakarta Commons Logging. It allows developers to un-tangle

5Quad stores store quads, not only triples. This is also
known as Named Graphs

their semantic web applications from a specific store and thus
profit from using always the best store (performance, features).
Writing new adaptors is easy: only 6 methods have to be imple-
mented.

RDF2Go currentlyEI comes with adaptors for Jena 2.2, Jena
2.3, Sesame 1, Sesame 2, YARS, NG4J and even an experimental
adaptor for the Java Content Repository API (JSR170). The
core features of RDF2Goare:

e add and remove triples with one-method-call, no costly ob-
ject creation involved

e query for triple patterns

e SPARQL (although not all stores support it)
e full support for quad stores

e built-in URIs for RDF, RDFS, XSD

e NO support for parsing. Users should use the supplied
parser from the triple stores instead. We don’t re-implement
everything.

As a brief introduction, RDF2Gomaps to Java as follows:
uri: java.net.URI
blank node: org.ontoware.rdf2go.BlankNode

plain literal: java.lang.String

language tagged literal: org.ontoware.rdf2go.LanguageTagLiteral

datatyped literal: org.ontoware.rdf2go.LanguageTagLiteral

This allows to add statements as simple as

// assume some URIs have been created
URI mike = new URI("urn://mike"); URI foafName = new
URI("http://foaf.com#name");

// add triple
model.addStatement (mike, foafName, "Mike Miiller");

There are a number of related approaches, but to our knowl-
edge none is as simplistic and comes with such a large number of
adapters. Related approaches are KPOntologym TrippiEI and of
course the inventor of all these

Internally, RDFReactor relies on Jena 2.3 (accessed through
RDF2Go) in the code generator, which is explained in the next
sections.

6. RELATED WORK

There have been several projects yet, that attempted to map
RDFS to Java. The predecessor of RDFReactor was OntoJava
|3] from AIFB. OntoJava was an early approach and lacks basic
features such as multiple inheritance, RDF resources with more
than one RDF literal related to it or RDF properties with multiple
domains.

Rdf2Java IT_Ulovercomes the inability of RDF Schema to express
restrictions by using the Protégé |6] annotations. RDF Schemas
created with Protégé can therefore be used to generated con-
strained Java classes. Rdf2Java generates Java classes and stores
all state at runtime in member variables. Although the tool al-
lows import and export of RDF data at runtime, the user still
has to invoke this periodically.

OntoJava and rdf2Java both generate source code for Java
classes and hold state at runtime in Java instances. This leads to
divergences between the two models and consistency problems.

An approach to map OWL full to Java is described in |4]. Here
the multiple inheritance problem, which applies to RDF Schema
as well, is solved by using Java interfaces. In Java, a class can

Srelease downloads, including all libraries: http://
ontoware.org/frs/7group_id=37&release_id=173
‘http://kpontology.isoco.com/download.html
8http://trippi.sourceforge.net/
%http://www-db.stanford.edu/ melnik/rdf/api.html
Whttp://rdf2Java.opendfki.de

http://ontoware.org/frs/?group_id=37&release_id=173
http://ontoware.org/frs/?group_id=37&release_id=173
http://kpontology.isoco.com/download.html
http://trippi.sourceforge.net/
http://www-db.stanford.edu/~melnik/rdf/api.html

have only one superclass, but may implement many interfaces.
Unfortunately, the OWL type system is only present in the form
of raised exceptions, as all properties are mapped to methods that
get and set generic non-type-safe Java.util.List methods.

Summary: The current mapping approaches create custom
Java classes in source code and give the user ways to load RDF
into this object model and write it back as well. State is thus
maintained in Java instances and not in the RDF model. This
leads to divergences between the two models and consistency
problems. Also some usability features such as a customisation
option is currently missing from all tools.

7. EVALUATION

In order to demonstrate the usefulness of RDFReactor we show
a small programm which shows how the API us used. The sample
program creates a FOAF-like file.

public static void main(String[] args) {

// set up an RDF2Go model with no reasoning
Model model = new ModelImplJena23(false);

// use generated FOAF API
Person max = new Person(model,

new URI("http://www.xam.de\#i"));
max.setFirstName ("Max") ;
max.setFamilyName ("V61lkel") ;
max.setMBoxHashed ("25ab1214....67700");
max.setNick("xamde");
max.setHomepage ("http://www.xam.de") ;
max.setPhone ("+49-171-8359678") ;

Person denny = new Person(model,
new URI("http://example.com\#denny"));
denny . setName ("Denny Vrandecic");
denny.setMBoxHashed ("4789fb144. . .fea3d12");
denny.setRdfSeeAlso(
"http://www....nglish?id_db=2097");
max.addKnows (denny) ;

8. CONCLUSION

In this paper we have shown how a domain-centric, usable Java
API can be generated from an arbitrary RDF Schema. Our im-
plementation, RDFReactor, is due to it’s dynamic nature always
in-sync with the RDF data model. This inherently allows for con-
current access to the RDF data model. Each class inherits from
ReactorBase, which allows the developer to manipulate arbitrary
RDF properties directly (set(URI prop, Object o). Thus we
do not restrict the expressivity of RDF in any way. Addition-
ally, code generated by RDFReactor is fully customisable, thus
method names and URIs can be changed easily.

We help to make the ontology reuse promise a reality by en-
abling the average Java developer to consume and produce data
conforming to existing ontologies through domain-specific Java
APIs. The main advantage of our approach is that develop-
ers who use the generated API don’t have to know RDF at all,
but can make full advantage of its’ capabilities. RDFReactor is
downloadable (Open Source GNU LGPL) at http://rdfreactor.
ontoware.org.

ACknOWledgementS:his research was partially supported by
the European Commission under contract FP6-507482 (Knowl-
edge Wetpmand FP6-027705 (Nepomulﬂ. The expressed con-
tent is the view of the authors but not necessarily the view of the
Knowledge Web Network of Excellence as a whole. Many thanks
to Andreas Eberhart, Daniel Oberle, Sudhir Agarwal, Peter Haase
and Heiko Haller.

"http://knowledgeweb.semanticweb.org
2http://nepomuk . semanticdesktop.org

9. REFERENCES

[1] L. M. Dan Brickley. Foaf vocabulary specification, 04 2004.

[2] 1. S. S. DSTC, Gentleware. Ontology definition metamodel.

[3] A. Eberhart. Automatic generation of java/sql based
inference engines from rdf schema and ruleml. In Lecture
Notes in Computer Science, volume 2342, 01 2002.

[4] A. Kalyanpur, D. Pastor, S. Battle, and J. Padget.
Automatic mapping of owl ontologies into java. In
Proceedings of SEKE 2004, Banff, Canada, June 2004.

[5] B. McBride. Jena: Implementing the rdf model and syntax
specification. Processings of the Semantic Web Workshop at
the WWW2001, 2001.

[6] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W.
Fergerson, and M. A. Musen. Creating semantic web
contents with protégé-2000. IEEE Intelligent Systems,
16(2):60-71, 2001.

APPENDIX
A. SAMPLE ONTOLOGY

Q@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

Qprefix rdfs:
<http://www.w3.0rg/2000/01/rdf-schema#> .

Q@prefix test:
<http://purl.org/net/xamde/ns/test#> .

test:Agent a rdfs:Class.

test:Person a rdfs:Class
; rdfs:subClassOf test:Agent

test:Paper a rdfs:Class.
test:Conference a rdfs:Class .

test:Researcher rdfs:subClass0f test:Person
H rdfs:comment "They are almost like normal people"

test:email a rdf:Property
H rdfs:domain test:Agent
; rdfs:range rdfs:Literal

test:hasName a rdf:Property
; rdfs:domain test:Person
; rdfs:domain test:Paper
; rdfs:range rdfs:Literal

test:writes a rdf:Property
H rdfs:domain test:Researcher
H rdfs:range test:Paper

test:publishedAt a rdf:Property
H rdfs:domain test:Paper
5 rdfs:range test:Conference

test:knows a rdf:Property
H rdfs:domain test:Person
; rdfs:range test:Person

http://rdfreactor.ontoware.org
http://rdfreactor.ontoware.org
http://knowledgeweb.semanticweb.org
http://nepomuk.semanticdesktop.org

B.

/**
*
*/

pac

imp
imp

imp
imp
imp
imp
/*x

*
*
*
*
*
*

*/

GENERATED RESULT

generated by RDFReactor on 10.03.06 23:14
kage org.ontoware.example.foaf;

ort java.net.URI;
ort java.net.URL;

ort org.ontoware.rdf2go.BlankNode;
ort org.ontoware.rdf2go.Model;
ort org.ontoware.rdf2go.impl.URIUtils;

ort org.ontoware.rdfreactor.runtime.RDFDataException;

This class was generated by RDFReactor on 10.03.06 23:14
This class manages access to these properties:

<1i> Name </1i>
<1i> Knows </1i>

public class Person extends Agent {

/** http://purl.org/net/xamde/ns/test#Person */
public static final URI RDFS_CLASS = URIUtils.createURI("http://purl.org/net/xamde/ns/test#Person");

/** http://purl.org/net/xamde/ns/test#hasName */
public static final URI NAME = URIUtils.createURI("http://purl.org/net/xamde/ns/test#hasName") ;

/** http://purl.org/net/xamde/ns/test#knows */
public static final URI KNOWS = URIUtils.createURI("http://purl.org/net/xamde/ns/test#knows");

/%%
* Returns a Java wrapper over an RDF object, identified by URI.
* Creating two wrappers for the same instanceURI is legal.
* @param model RDF2GO Model implementation, see http://rdf2go.ontoware.org
* @param classURI URI of RDFS class
* Qparam instanceURI URI of this instance
*/
protected Person (Model model, URI classURI, URI instanceURI) {
super (model, classURI, instanceURI);

}

protected Person (Model model, URI classURI, BlankNode bnode) {
super (model, classURI, bnode);
}

protected Person (Model model, URI classURI, URL instanceURL) {
super (model, classURI, instanceURL);

}

/%%
* Returns a Java wrapper over an RDF object, identified by URI.
* Creating two wrappers for the same instanceURI is legal.
* @param model RDF2GO Model implementation, see http://rdf2go.ontoware.org
* Q@param uri URI of this instance
*/
public Person (Model model, URI uri) {
super (model, RDFS_CLASS, uri);
}

/%%
* Returns a Java wrapper over an RDF object, identified by a URL.
* Creating two wrappers for the same URL is legal.
* @param model RDF2GO Model implementation, see http://rdf2go.ontoware.org
* Qparam url URL of this instance
*/
public Person (Model model, URL url) {
super (model, RDFS_CLASS, url);

}

/%%
* Returns a Java wrapper over an RDF object, identified by a blank node.
* Creating two wrappers for the same blank node is legal.
* @param model RDF2GO Model implementation, see http://rdf2go.ontoware.org
* Qparam bnode BlankNode of this instance
*/
public Person (Model model, BlankNode bnode) {
super (model, RDFS_CLASS, bnode);
}

/%%
* Returns a Java wrapper over an RDF object, identified by
* a randomly generated URI.
* Creating two wrappers results in different URIs.
* @param model RDF2GO Model implementation, see http://rdf2go.ontoware.org
*/
public Person (Model model) {
super (model, RDFS_CLASS, model.newRandomUniqueURI());
3

/%%
* Q@return all instances of this class
*/
public Person[] getAllInstances() {
return (Person[]) getAllInstances(super.model, Person.class);

}

/**
* Q@return all A’s that have a relation ’Knows’ to this Person instance
*/
public Person[] getAllKnows_Inverse() {
return (Person[]) getAll_Inverse(Person.KNOWS, this.getID(), Person.class);
}

/%%
* add ’Knows’-Inverse
*/
public void addKnows_Inverse(Person value) {
value.add(Person.KNOWS ,this);
}

/%%
* Q@return the only value. null if none is found
* Qthrows RDFDataException, if the property has multiple values
*/
public java.lang.String getName() throws RDFDataException {
return (java.lang.String) get(NAME, java.lang.String.class);
X

/%%
* removes all values and sets this one
*/
public void setName(java.lang.String value) {
set (NAME, value);
}

/**
* removes a value
*/
public void removeName(java.lang.String value) {
remove (NAME, value);

}

/%%
* adds a value
*/
public void addName(java.lang.String value) {
add (NAME, value);
}

/%%
* returns all values
*/
public java.lang.String[] getAllName() {
return (java.lang.String[]) getAll1(NAME, java.lang.String.class);
}

/%%
* Q@return the only value. null if none is found
* Qthrows RDFDataException, if the property has multiple values
*/
public Person getKnows() throws RDFDataException {
return (Person) get(KNOWS, Person.class);

}

/%%
* removes all values and sets this one
*/
public void setKnows(Person value) {
set (KNOWS, value);
}

/**
* removes a value
*/
public void removeKnows(Person value) {
remove (KNOWS, value);

}

/**
* adds a value
*/
public void addKnows(Person value) {
add (KNOWS, value);
}

/%%
* returns all values
*/
public Person[] getAllKnows() {
return (Person[]) getAll(KNOWS, Person.class);
}
}

APPENDIX

A. REVIEWS JUC2006

A.1 Reviewer7

A.1.0.1 Criteria.

An excellent paper, very suitable for the expected confer-
ence audience. The tool is well described both in terms of
its features and implementation.

A.1.0.2 Overall assesment.
5

A.1.0.3 Comments to the authors.

A.2 Reviewer 14

A.2.0.4 Overall assesment.
5

A.2.0.5 Comments to the authors.

Content

E.g: Are the goals of the project or demo clear? Is the
maturity of the work explained? Have key design choices
been characterised and explored? Has the work been robustly
assessed?:

The paper describes an approach to map RDFS and OWL
ontologies to JAva classes, generating working code that can
be used to interact with instances of the ontology. The Jena
framework is used as a basis for that project (together with
other RDF frameworks).

The work is mature and seems to be used in real projects.
The argumentation is sound and logic, different common
pitfalls (naming, ease of use, strong typing) are adressed.
The work is repeatable and published as open-source, so
this is a contribution.

What I miss: You argument that you work will "make the
world a better place” in the introduction. Which is ok, but
perhaps you can add a nice story about a programmer that
already lives in this happy place (cut the evaluation section
in favor for a nice war story?)

Logic Flaw: ”Concurrent usage of the same data, e. g.
access as a web portal, is also no problem.” -> are you sure?
As RDFReactor does not (from itself) provide transactions,
there is the possibility of having non-valid RDF data in the
store at some moments.

Correctly, RDFReactor does not solve that problem, so
perhaps cut this.

Robustness and practibility: Clearly, RDFReactor is not
usable in a client-server environment. So - as most Seman-
tic Web applications are client-server - what is your answer?
You might explain that the approach works best on in-mem
models and does not support transactions, perhaps give a
slight example how it can be used in a client-server example
(without live access to the servers). Example: a server might
not accept an instance that missed required properties, so
you have to add all of them before "committing”. RDFRe-
actor does not support that, nor does any other RDF api :-|
For example, the typical Java approaches to map relational
databases to in-mem representations might help with that
argument (DB people always think in transactions).

Flaw?: In the paper you mention that you implement
inverse relations using getP_inverse(). In the demo down-

loadable at your website, the Person-example does not have
these inverse. So - do you support inverse (was the demo
generated with this option turned off7) The same can be
said for the appended code examples.

You talk about "documentation in the javadoc” but there,
you missed the chance to include the rdfs:Description of
properties - or? (is the rdfs:description of classes and prop-
erties included in the javadoc? it would be good if it is.)

Presentation FE.g: Are the key ideas clearly and suc-
cinctly presented? Does the presentation assume too much
or too little background knowledge? Is there too much or too
little detail?:

Sturdy scientific engineering work, no flaws there.

Side remark: Author does not conform to the submission
format as text is two column. ” Papers should be in 12 point
Times font, single column per page, A4 or US Letter. PDF is
preferred.” I also accept it 2-column, it improves readability.
Check with workshop organizers if this is a problem!

Abstract is a concise bounded description of RDFReactor,
well done.

"Unfortunately developers familiar with object oriented
programming languages have to make a paradigm shift in
order to produce data usable on the Semantic Web (e.g.
RDF1). This means, all generated RDF instance data should
be described by terms of an ontology.” -> these two sen-
tences sound not correct (this means, I cannot determine
that means from the first sentence). Let check by native
english speaker!

Typo: "to domain-specific Java classes and relations to
properties, as explained in Sec. ?? and Sec. 77.” —> check
your latex there.

Typo: "The code generate employs a number” generator?

Typo: "to become a semantic web adeveloper” —> we alla
ara adeveloper :-)

Style: In section 3. RUNTIME DESIGN the use of enu-
merations/indent looks weird (indenting a whole column)
perhaps switch to
subsubsection 7

Content: Section "O0-Graph mapping layer:” Too much
detail.... please cut the details of "ReactorBase instances
map to RDF resources and offers methods to manipulate
triples of the form (i, *, *), where i is then instance identifier,
a blank node or a URL.” thats just too much. If I want to see
the code, I can (thanks to your open-source policy) download
it.

"The RDF generated by such method calls is always compliant-

or rather: described-by the ontology the API was generated
from. This ensures that the RDF data is usable by other
tools (even concurrently) as well.” What do you want to
say? Is this paragraph needed?

Understanding: "This reflects well the strategy employed
in the design of RDFReactor: We separate the concern of
graph-OO-mapping from the concern of mapping loosely-
typed-RDF from strictly-typed Java.” I don’t really under-
stand the second sentence, but thats ok with me (the rest is
crystal-clear).

The section about naming is good! This problem is under-
evaluated but always an issue for developers.

Typo: ”As a brief introduction, RDF2Gomaps to Java as
follows:” ...RDF2Go maps...

Section "Related Work” You cite related work just above
the section header and below, inside the section, that is awk-
ward to read.

Just above "Related Work”: “Internally, RDFReactor re-
lies on Jena 2.3 (accessed through RDF2Go) in the code
generator, which is explained in the next sections.” — uhm -
you meant in the above sections? (the next section does not
contain that, or?)

"Related Work” "Rdf2Java generates Java classes and stores
all state at runtime in member variables.” That was so years
ago, the latest Rdf2Java does store the data in Jena Models
(background) and does it like RDFReactor (Setting/getting
directly). So give credit there. On the other hand, RDF2Java
does not do the inverse like you did and does not use Veloc-
ity nor a templating engine (but thats nitpicking), and its
not cross-RDF framework compatible like RDF2Go.

"Evaluation” That is not an Evaluation in the scientific
sense (to my knowledge) You might us all spare the trouble
of discussing it by just removing this section. Also, after
reading the paper, I can easily guess that the code would
look like that.

You work is good, you don’t have to say this using this
evaluation arumentation. Comparing the lines-of-code of di-
rect graph interaction (addStatement(), removeStatement(),
max.addProperty (FOAF.name, "MAx”)) to rdfreactor might
be an argument, though. Sure, evaluating RDFReactor is
not easy and I understand that you did better than the state-
of-the-art a slight tip may be: http://www-cse.ucsd.edu/ wgg/CSE210/howtoread.html
”What is the evaluation of the proposed solution? An idea
alone is usually not adequate for publication of a research
paper. This is the concrete engagement of the research ques-
tion. What argument, implementation, and/or experiment
makes the case for the value of the ideas? What benefits
or problems are identified? Are they convincing? For work
that has practical implications, you also want to ask: Is this
really going to work, who would want it, what it will take
to give it to them, and when might it become a reality?” So
- you fulfill most of these arguments, perhaps just say that.

”Code & Ontology appendices” For a paper, this is not
needed. You exaplained all above and this is (for the final
version) a waste of trees. Please cut it, your work is fine
without it.

btw: you got a broken link on your homepage: http://rdfreactor.ontoware.org/
to http://rdfreactor.ontoware.org/javadoc-example

btw: good to include acknowledgements and good to in-
clude Heiko, whom you used in your beginning examples

)
A.3 Reviewer 21

A.3.0.6 Overall assesment.
4

A.3.0.7 Comments to the authors.

Content FE.g: Are the goals of the project or demo clear?
Is the maturity of the work explained? Have key design
choices been characterised and explored? Has the work been
robustly assessed?:

The system is epxlained well and clearly, and its goals
made clear. I would have liked to know more about whether
this system has been deployed. How widely is it used? Has
it been used on any realistic applications?

	Introduction
	Overview
	Runtime Features
	Code Generator Features

	Runtime Design
	Code Generator Design
	Naming
	Inheritance Flattening
	Template
	Implementation Details

	Model Manipulation Design
	Related Work
	Evaluation
	Conclusion
	REFERENCES -9pt
	Sample Ontology
	Generated Result
	Reviews JUC2006
	Reviewer 7
	Reviewer 14
	Reviewer 21

