
1

SUBMISSION OF ACCEPTED VERSION: 11.04.2008
REVISED VERSION 2: 15.09.2008, REVISED VERSION 3: 02.10.2008,
REVISED VERSION 4: 16.12.2008, REVISED VERSION 5: 15.01.2009

Conceptual Data Structures for Personal Knowledge

Management
Max Völkel and Heiko Haller

Structured Abstract

Purpose – Designing a model and tools that are (a) capable of

representing and handling personal knowledge in different
degrees of structuredness and formalisation and (b) usable and
extensible by end-users.

Design/methodology/approach – This paper presents the result of
analysing literature and various data-models and formalism used
to structure information on the desktop.

Findings – The unified data model (CDS) is capable of representing
structures from various information tools, e. g. documents, file
system, hypertext, tagging, and mind maps. The five knowledge
axes of CDS are: identity, order, hierarchy, annotation and
linking.

Research limitations / implications – The CDS model is based on
text. Extensions for multimedia annotations have not been
investigated.

Practical implications – Future PKM tools should take the
mentioned shortcoming of existing PKM tools into account.
Implementing the CDS model can be a way to make PKM tools
interoperable.

Originality/value – This paper presents research combining
cognitive psychology, personal knowledge management and
semantic web technologies. The CDS model shows a way to let
end-users work on different levels of granularity and different
levels of formality in one environment.

Keywords personal knowledge management, semantic web,
cognitive limits, semantic desktop, user interfaces, semantic
authoring

Paper type Research paper

2

Introduction
“The most important contribution of management in the 20th century
was to increase manual worker productivity fifty-fold. The most
important contribution of management in the 21st century will be to
increase knowledge worker productivity – hopefully by the same
percentage. [...] The methods, however, are totally different from those
that increased the productivity of manual workers.” Drucker (1999a, p.
79)

What might these methods be? The field of knowledge
management investigates since 1995 (Stankosky, 2005) how people
and knowledge work together. North (2007) defines knowledge work as
work based on knowledge with an immaterial result; value creation is
based on processing, generating and communicating knowledge.
Polanyi (1966) makes a distinction between explicit knowledge
encoded in artefacts such as books or web pages, and tacit knowledge
which resides in the individual. The SECI-model of Nonaka (1994)
describes knowledge transfers between humans and artefacts.

The field of knowledge management has focused on knowledge
transfer between people, either via socialisation or via externalised
artefacts. The high expectations of central enterprise knowledge
repositories have often not been met (Braganza and Mollenkramer,
2002). The following wave of expert finders and corporate white pages
focused mostly on connecting the right people and let them
communicate.

Today, knowledge workers are flooded with information (Alvarado
et al., 2003). The field of Personal Information Management (PIM)
aims to help individuals to manage all artefacts in the personal space of
information (PSI) which “includes all the information items that are, at
least nominally, under that person’s control (but not necessarily
exclusively so)” (Jones and Bruce, 2005, p. 9). Recently, more research
is being focussed on the individual knowledge worker, establishing the
field of Personal Knowledge Management (PKM):

• The knowledge-based organisation is no more effective than the
sum of its knowledge workers (Davenport, 2005).

• One should focus on the individual and give individual users
incentive and benefit before focusing on the social network
(Oren, 2006).

• Schütt (2003) defines a knowledge worker based on the works of
Drucker (1999b) and Taylor (1911): Simplified, workers (doing)
are instructed by managers (thinking). These managers have to
manage themselves. This self-managing is considered an

3

important characteristic of a knowledge worker. Increasing the
knowledge worker productivity has to be a company’s main goal,
not storing documents in data bases. Knowledge workers have to
manage themselves, because their tasks are constantly changing.

Seminal articles by Bush (1945) and Engelbart (1963) describe tools
that allow an individual to work more efficiently and more effectively
with external representations of knowledge.

In knowledge work, people are frequently confronted with two
limitations of the human mind: long-term memory recall and short-term
memory capacity. Limits of the long-term memory can be overcome
partially with tools to help remembering or reconstructing knowledge.
Human short-term memory can hold only around seven objects at a
time (Miller, 1956). For user interfaces, Shneiderman (1998, p. 75)
advises to “Do everything possible to free the user’s memory burden”.
Interestingly, also the other limitation can be partly relieved by using
external knowledge representations, e. g. by taking short notes, or
drawing a diagram or mind-map that helps keep an overview over a
somewhat larger set of items and quickly bring each single one into full
conscience on demand. We conclude that both of these very prominent
cognitive limits can be addressed by providing an adequate external
knowledge representation tool.

Concerning explicitness of knowledge, Nonaka and Takeuchi (1995)
distinguish two kinds of knowledge: explicit and tacit (internal). Later
works (Despres and Chauvel, 2000; Nonaka and Konno, 1998)
conclude that external and tacit knowledge are actually two extremes
on a spectrum. Maurer (1999, page 12) states that knowledge resides in
the heads of people and the computer can only store “computerized
knowledge” which is to be understood as “shadow knowledge”, a
“weakish image” of the real knowledge.

In PKM, we often deal with knowledge that is somewhere in the
middle of these extremes. Note-taking e.g. is a core activity of PKM:
An individual creates an external representation for internal concepts.
Later, the external representation is internalised again to re-activate the
knowledge in the individuals mind. If somebody writes a short informal
note to himself it is often completely meaningless to others. The
knowledge is thus not fully externalised – Yet this note is an external
reminder about some knowledge that the author would otherwise
forget.

4

Research Goals
The goal of this research is to find a general representation model for
PKM tools. Different from other models, the model we are looking for
is not meant to be hidden behind a yet to be defined user interface, but
to be exposed as directly as possible to the end-user. The model should
be easy to learn and it should be possible to import, represent and
handle a number of existing knowledge organisation formalisms. In a
more colloquial way, we look for a model that can do with concepts
what spreadsheets can do with numbers.

Scenario
Today’s knowledge workers are confronted with an overwhelming
amount of information. Sometimes information is sent to the
knowledge worker (e.g. by email or RSS feeds), found by chance (e.g.
while meeting somebody in an airplane), or actively researched (e.g. in
the library). A typical information professional could be a business
analyst reviewing AJAX-frameworks in Web 2.0 start-ups; a biologist
researching where sharks live and how and why their population
changes, a lecturer in French history or a lawyer specialising in
environmental law. The running example of this article will be a
biologist called Linda writing a paper on white sharks for a conference
in Italy.

The information typically encountered by knowledge workers is
either of self-management nature, such as tasks and appointments or
contact data, all of which is well covered by existing specialised PIM
tools. Or the information belongs to the knowledge worker’s domain of
interest. Since the structure of this domain-specific information is
typically rather unique and often even undergoing thorough change,
there are often no specialised tools available that would support
handling this information in a way appropriate for its structure. Popular
generic tools are spreadsheets, text documents, slides, and the file
system. However none of them would let Linda collect material about
shark populations, reasons for their growth or decline, different shark
species, shark hunting strategies, etc. in an integrated way. In a text file
she would probably loose overview and in a spreadsheet she would not
be able to represent relations between shark species. If she would use
both tools, e.g. she could not easily refer to a specific cell in the
spreadsheet from the document.

The two main tasks we intend to support are structured note taking
and document creation. The core process from notes to a document can
be described as steps in a knowledge maturing process (Maier and

5

Schmidt, 2007). Here, the question of granularity arises: Shneiderman
(1989) found out that users are better able to answer questions when a
text is modelled as more-fine grained (46 articles) hypertext instead of
large chunks (5 articles). On the other hand, granularity is also an
important cost-driver for PKM and a PKM system is only of value to a
user if it provides more benefit in delivering relevant information than
the cost of using it, i.e. externalisation, refinement, and search (Völkel
and Abecker, 2008). We conclude that a PKM system should both be
able to represent a whole range of granularity from short items (e.g.
notes) to longer items (e.g. emerging documents).

Research Design/Methodology
In order to create a lean vocabulary for incremental recording and

step-wise formalisation of personal knowledge, we conducted an
extensive analysis of existing models and tools widely used to record,
structuring and communicate knowledge. We identified a set of
common knowledge structures found to be inherent in most knowledge
artefacts – ranging from vague paper notes over books, hypertexts and
folksonomies to highly structured documents and even taxonomies and
most ontologies.

In order to allow gradual transitions between various degrees of
formalisation, the types of these structural relations were modelled
hierarchically as a lightweight top-level ontology of general relation
types by subsuming the more specific ones under those they
semantically imply. This resulted in the conceptual data structures
(CDS) model (cf. Völkel et al., 2008).

A first open source CDS back-end is implemented on the semantic
web content repository (SWCR, Völkel, 2007). On top of this CDS
back-end, three user interface prototypes have been realised.
Additionally, we ran a small user survey to refine and extend
requirements stated in state of the art literature. We first present briefly
the CDS model and then in greater length the tools. After that, we
explain how Linda could use these tools in her daily work.

CDS Model
The CDS model consists of two parts, a data model and a set of core
relations found most often in existing models and tools used today for
PKM.

6

CDS Data Model
The CDS data model consists of 1) items of unstructured text,
structured text, images or other content, 2) names, 3) statements
between items of all kind and 4) relation types.

Formally, we have a Model M, which is a set of Items. Each Item
has a unique identifier (i.e. a URI) which makes it globally addressable.
Each Item belongs to exactly one Model, has a creation date, a last
modified date and an author. There are four kinds of Items a user can
use:

A ContentItem represents a piece of addressable content. Content
may be textual or binary. Binary content is defined as on the web
(Jacobs, 2004), i. e. having an encoding, MIME-type and length
measured in bytes. Textual content in CDS has by default UTF-8
encoding and may use some formatting using the structured text
interchange format (STIF), as defined in (Völkel et al., 2008).

A NameItem models a term of the user’s vocabulary. The name of
the NameItem must be unique within a Model. There may be two or
more ContentItems having the same content as a NameItem or as
another ContentItem.

NameItems allow hiding URIs completely from user interfaces. In
this respect, they are similar to e. g. titles of wiki pages. Note that
NameItems represent only the name itself. E. g. a wiki page can be
modelled as two Items: A NameItem to represent the wiki page title and
a ContentItem to represent the wiki page content. The NameItems can
be used as generic named containers, tags or formal types. NameItems
allow jumping directly into certain nodes of the Model, similar to using
known URLs to start browsing the WWW.

A Relation is a special kind of NameItem. Relations are used in Sta-
tements, which are explained in the next paragraph. Each Relation has a
mandatory inverse Relation.

A Statement connects Items. A Statement is always of the form
(Item, Relation, Item). As a Statement is itself an Item, the user can
annotate statements as well – a handy feature e. g. for discussion
systems.

It is possible that different statements with the same URI assert the
same triple. But it is not possible that two different statements
(differing in source, relation or target) have the same URI. For every
Statement (s,p,o), the inverse Statement (o,−p,s) is inferred, where −p is
the inverse of p. This is handy for user interfaces which allow browsing
of items in both directions.

7

CDS Relation Type Hiearchy
The second part of the CDS model is a set of built-in Relations, which
are repeatedly occurring across different knowledge organisation tools
and models. The Relations are arranged in an inheritance hierarchy so
that the relations with more specific semantics imply the relations with
broader semantics.

The five core relation types deal with identity (similar to, same as,
has alias), order, hierarchy, different forms of annotation (i.e. free-text
annotations, tagging, and formal typing), and generic hyper-links. As
the relation hierarchy is represented in the CDS data model, the user
can (and is expected to) extend it.

Figure 1: The CDS relation type hierarchy

The root type of the relationship hierarchy is related. Every Item is
related to another Item, if any kind of Relation has been stated. This
Relation allows to state very vague knowledge, i. e. “these items are
related, but I can’t tell why or don’t want to spend the time to refine
this now”. The next level in the hierarchy is either similar, to link items
that describe the same real-world entity or has target, to interlink
different items. Has target models a generic, directed hyper-link, as it
is found in WWW, references in documents, or links in the file system.
The CDS model contains three built-in refinements for has target
which user interfaces should treat specially.

Has after and its inverse relation has before model any kind of
ordering relation. It might be order in space, time or by other means.

Has detail and its inverse has context represent any kind of
hierarchy and nesting. This relation represents hierarchies in a generic
way, e.g. part-whole relations or type hierarchies are considered special

8

cases of this relation. Types can be arranged in a type inheritance
hierarchy, like classes in an ontology or programming language.

Both order and hierarchies are most often used among items that
have the same type. To represent links between items of different
modelling layers, CDS uses has annotation and its sub-relations.

Together with the hype around “Web 2.0”, tagging became popular
for assigning easy-to-type keywords on items. In CDS, tagging is
treated as a kind of annotation, hence has tag is a sub-relation of has
annotation.

Assigning items a formal type is accomplished with the relation has
type. In CDS, has type is a sub-relation of has tag, which leads to the
desired effect that e.g. a species of shark that is typed as a carnivore
implies it is also tagged as carnivore.

Tools based on CDS
In this section we present three prototypes of tools based on the CDS
model, which have been developed within the NEPOMUK (2008)
project.

Hypertext Knowledge Workbench
The Hypertext Knowledge Workbench (HKW) resembles a semantic
wiki, but without the tight coupling of one title to one page. HKW is
different from semantic wikis: (a) it is backed by the more flexible
CDS model, (b) allows to create and change formal statements easily,
and (c) integrates authoring, structuring and formalisation into the
retrieval.

Fig. 2 shows a screen-shot of the GUI1 focusing on the NameItem
“Great white shark”. The screen is divided into seven coloured areas,
showing related Items. More formally, for a centred Item i the GUI
shows a dynamic view for the query (i,*,*), including all inverse
statements and inferred triples.

Below the “Great white shark” item, HKW shows the Items related
via the relation has detail. E. g. the statement “Great white shark”-
“maximum length”-“6 m” is rendered here. This tells the user also that
‘maximum length” is a sub relation of has detail. Behind the word “6
m” there are icons allowing the user to navigate to the Statement “Great
white shark”-“maximum length”-“6 m”. In a Statement view, the State-
ment can be changed. E. g. the user can change the Relation or create a
new source or target. Auto-linking is supported wherever possible.

1Try online or download from http://cds.xam.de

9

Figure 2: HKW prototype screen shot, focusing on Great white shark

10

Alternatively, she can delete this statement or create a new Item at
the location (Great white shark, maximum length) by pressing the plus
icon. This allows creating new semantically interlinked items easily. If
the user enters a longer text or uses line breaks the system assumes the
user creates a ContentItem. For short text, the system suggests existing
NameItems or creates new ones.

Items related to the selected Item via has context (the inverse
relation of has detail) are rendered above the “Great white shark” item.
The other coloured boxes represent other CDS core relations. The GUI
shows relations always in their most specific box. Items are only
rendered in different boxes at the same time if the user assigned
multiple super-relations to a relation.

QuiKey

QuiKey is a kind of smart semantic command-line that focuses on
highest interaction-efficiency to browse, query and author CDS-based
knowledge bases in a step-by-step manner. It combines ideas of simple
interaction techniques like auto-completion, command interpreters and
faceted browsing and integrates them to a new interaction concept.
QuiKey forms a generic, extensible user interface for CDS models.
Despite its versatility, QuiKey needs very little screen space, which
also makes it a candidate for future mobile use. QuiKey is described in
more detail in (Völkel et al., 2008). A screen-shot of its current
implementation is depicted in Fig. 3.

Figure 3: Screen shot of the current QuiKey implementation showing a

list of statements about “Claudia Stern”

11

iMapping
iMapping is a technique for visually structuring information objects. It
supports the full range from informal note taking over semi-structured
personal information management to formal knowledge models. With
iMaps, users can easily go from overview to fine-grained structures
while browsing editing or refining the knowledge base in one
comprehensive view. An iMap is comparable to a large white-board
where information items can be positioned like post-its but also nested
into each other. Spatial browsing and zooming as well as graphical
editing facilities make it easy to structure content in an intuitive way.
iMapping builds on a zooming user interface approach to facilitate
navigation and to help users maintain an overview in the knowledge
space.

The iMapping approach is described along with its motivations and
foundations in more detail in (Haller, 2006). A small sample map
mock-up is depicted in Fig 4.

Figure 4: An iMap about iMapping

12

Analysis and Requirements
We asked 27 participants (of which 17 were researchers, largely in the
field of computer science) in an online survey “What should a Personal
Knowledge Management (PKM) tool do for you?".

Information Types
Users mentioned all kinds of information types to be tackled by a PKM
tool. One user summarized the situation as “A broad amalgam of
scientific papers, non-scientific articles, URLs and other documents,
IM conversations, emails and personal notes comes in daily, forming
sediments of data on my disk”. An exhaustive list of all information
types mentioned by users includes:

• scientific papers (2x),
• non-scientific articles (1x),
• bookmarks (5x) ,
• instant messaging conversations (1x),
• e-mails (2x),
• personal notes (2x),
• social network (1x),
• scans (1x),
• pictures (1x),
• online documents (1x),
• account information (e.g. bank account number, 1x),
• topics (1x),
• how-tos (e.g. how to set a classpath in Java, 1x),
• mathematical knowledge (1x),
• contacts (2x),
• presentations (1x),
• projects (i.e. their notes, time plans, accounts, ideas, 1x),
• concept maps (1x),
• tools (1x),
• ideas (1x),
• events (1x),
• recipes (1x),
• favourite teas (1x),
• tax information (1x),
• and to-dos (1x).

13

Tasks
In the online survey, people mentioned a number of diverse tasks: Note
taking, paper writing, birthday reminder, organizing to move to another
country, strategic planning, scientific research, and consultation with
friends and colleagues. Only the task “paper writing” (cf. Esselborn-
Krumbiegel, 2002) was mentioned more than once (five times). One
user summarized this as“[…] locate the information by keyword, date,
other metadata or by tracing a path of discovery, then attributing the
source correctly, and communicating in a universally readable format
[…]”

Functional Requirements
In the remainder of this section we discuss functionality requirements
and their mapping to CDS and tools based on it. The basic processes in
PIM have been identified (Jones and Bruce, 2005) as:

• Keeping, i.e. input of information into a PSI,
• Finding or re-finding, i.e. output of information from a PSI,
• and Meta-activities, e. g. mapping between information and

need, maintenance and organisation.
For note-taking a user in our survey wrote: “a PKM tool should help
me aggregate, collect and view all the small bits of information, which
are either needed for long term reference, or in the short term for
completing a task.”

Easily find things: At the heart of PKM is the requirement to easily
find things that are stored in the PKM tool. Although the information
stored in items and their relations is itself often not self-contained, it
might suffice to remind the user of the knowledge that was present
when the information was entered.

In HKW, Linda could e.g. retrieve the year in which the movie
“Jaws” was shown if she remembered the director “Stephen Spielberg”.
She enters “Steph” and would get an auto-completion list containing
“Stephen Spielberg”. From there, she would probably look under the
hyperlink “has directed” to see the title “Jaws”. After clicking on it, she
can see the details of the movie including the release data 1975. In
general, if the item to be found is not a NameItem, HKW allows her
browsing associatively from a known entity to the desired one, just like
in a wiki. However, navigation in HKW is expected to be faster,
because links are already grouped into different cognitive dimensions
(ordering, hierarchical, typing or other links).

In the iMapping prototype, she would first zoom in the upper right
corner for “private stuff”. In there, she would go to her “Movies” item

14

and browse in. As there are many movies, the first goes into the “Best
Directors Ever” item inside the “Movies” item. In there, she selects
“Stephen Spielberg” and can see all outgoing links, labelled with the
type. Although there are quite some links she just looks at links
pointing at movies and quickly identifies the “Jaws” movie. After
zooming onto it she sees “1975” inside the “Jaws” item. On hovering
over it, a relation “release date” is shown between the outer “Jaws”
item and the inner “1975” item. IMapping allows finding an item based
on spatial proximity simply by moving around in the infinite 2D space.

Fast entry of new items and extension of existing items: The
survey revealed a desire for fast entry of new items (mentioned two
times in the survey) as well as an easy way to extend existing items
(2x). Oren (2006) advises to focus on simply capturing and
representing the things that the user wants to store, before doing any
reasoning with it.

QuiKey is the fastest tool by means of mouse clicks and keys typed
for entering data. With one short-cut the tools is brought into focus.
Now Linda can simply enter a new short note such as “reproduction is
slow, with sexual maturity occurring at about 12-15 years of age“.
Alternatively she can write “white shark” <tab>, “sexual maturity”
<tab> “12-15 years” <return>. This will add a CDS statement to her
PKM knowledge base without requiring here to navigate anywhere first
and still extend the existing white shark items. New items and relations
are created on the fly if needed. Re-use of existing items and relations
is encouraged with auto-completion. After she wrote “white shark”
<tab> QuiKey already presented here a ranked list of existing
statements about the white shark. Thus QuiKey also includes browsing
of the knowledge base.

Grouping of items: The next set of features required is centred on
grouping of items. The tool should be able to let me group seemingly
unrelated content (survey). Users need composition for navigation
(Frank, 1988). This allows e.g. browsing and thereby narrowing down
their view and allows discovering related, yet unexpected items. In the
iMapping prototype, Linda could e.g. simply move the item “basking
shark” next to “white shark” as both shark types have similar body
shapes. This would not introduce any kind of statement in the
underlying CDS model but help her to remember associations with
minimal modelling effort.

Named containers: Users also demanded that it should be easy to
place new items into a named container (survey). But on the other
hand, Frank (1988) advises to not require a user to name all items.
Consider e.g. several contacts in Linda’s address book to link to the

15

same postal address (e.g. all 20 people working for a non-governmental
underwater-life-protection organisation). In this case it would be
overhead to assign the address of the office a dedicated name. Yet it
would also be cumbersome to have to change the entries of all these
people in case the postal address of the NGO changes. Therefore it
should be allowed but not required to give entities a name.

CDS accomplishes this with NameItems which are unique within a
knowledge model and which can be used as contexts (i.e. like
document folders), tags, types or anything. The three prototype tools
support consistent re-use of NameItems by offering auto-completion
features. Conceptually, the relationship types are also names from the
same namespace, i.e. there cannot be a relation named ‘knows’ being
something different from a name item ‘knows’. One NameItem
represents only one thing, although multiple NameItems can represent
the same thing (i.e. synonyms).

In iMapping, Linda can create an item “fish eaten by white shark”
and put inside items named “rays”, “tuna”, and “smaller sharks”. She
can simply click inside an existing item and thereby gets a cursor to
enter the text of a newly created child item. She could also create first
the three fish items and then add a new item and drag the fish items
into it.

In HKW, the intended way would be to navigate to “white shark”
and click on “add” in the “has detail” panel. She gets a pop-up window
with two fields; the first one is pre-filled with the text “has detail”, the
second has the user input focus. She could enter just some text “x” now
and thereby add the statement (white shark, has detail, x). Instead she
decides to create a new sub-relation of “has detail” by typing “eats”
into the first field. In the second field she types “rays” and presses
<submit>. This creates the two statements (has detail, has sub-relation,
eats) and (white shark, eats, rays). HKW shows here now “eats” as a
sub-relation of “has detail”. She clicks on the “add” icon of “eats” and
enters “tuna” <submit> and repeats this for “smaller sharks”.

Categories: In the survey, users prefer categories over strict
hierarchies (mentioned three times). All three CDS-based tools allow
multiple parents, i.e. an item can have several tags, types, annotations,
or contexts. A relation can have several super-relations. HKW presents
the relationship inheritance graph as a flat tree; some relations appear
simply as children of several other nodes.

Context: Users wish it should be clear which data is from my
personal information sphere and which is coming from outside
(survey). This is in line with Oren (2006): Understand the notion of
context, capture it together with the information and use it to enhance

16

recall and understanding. The CDS back-end records for each item the
creation date and the author that entered it into the system. Items
created by the system are marked with a different author.

Links: The next set of required features deals with explicit links
between items. Oren (2006) summarizes: exploit the interlinked nature,
do not rely only on search, and allow people to associate freely. Three
users required links between items, e.g. a link between the tasks “buy
food for dog” and “bring dog to veterinary”.

The link is one of the four core CDS types and all three prototypes
build on it. In iMapping, users can drag-drop typed links between
items. In HKW the user can even annotate, tag and link the links
themselves.

Order: Ordering a collection of ideas or text snippets into a
coherent flow is one of the main tasks of authoring (Esselborn-
Krumbiegel, 2002). A user should be able to create order gradually, e.
g. by stating order between some sections, but not requiring a total
ordering.

Partial or total order is one of the four core dimensions in CDS. It is
supported by HKW which allows e.g. Linda to state explicitly that
section A of her paper comes before B and before C but there is no
relation yet between B and C. This allows Linda to gradually and
consciously add order to her article outline without mentally keeping
track what is at some place in the list because it was explicitly put there
or because it is just currently there while it is being sorted.

Hierarchy: Hierarchies of all kind are commonly used in user
interfaces to let the user narrow down his interests step-by-step. Users
need ways to see multiple levels of detail at once (Frank, 1988).
Shneiderman (1996, p. 336) emphasizes the need to get “Overview
first, zoom and filter, then details-on-demand.” Users in our survey
required being able to hide level of details to get an overview of the
content. Others wished a graphical overview that represents
connections and interactions between notes.

CDS has a built-in relationship type to represent hierarchies, i.e.
“has context” and “has detail”. HKW allows seeing three level of a
hierarchy, i.e. current item, context of that item, and details of that
item. IMapping allows seeing infinitely many levels at once, only
limited by screen resolution.

Transclusion: User often loose structure of knowledge cues when
transforming from one tool to another. E. g. text snippets from a
hypertext context loose their identity when pasted into a document.
Instead of copying the value of an item it is more elegant to copy a
reference to the item. If the content item is changed, the change is

17

reflected in all parts where it is embedded. Embedding a reference and
rendering the content is called transclusion. The need for transclusion is
explained by Ludwig (2005) and Nelson (1995).

CDS makes it easy to reference all parts of a model, as each item
has a globally unique URI. There is currently no tool support
implemented for this in the prototypes.

The last set of requirements deals with adding and using more
structure and semantics to the items.

Flexible schema: In the survey paper of Oren (2006) we find the
requirement for flexible schemas: Leave users their freedom and do not
constrain them into rigid schemas.

The CDS model can be used to simply capture the semantics on a
level of node-and-arc diagrams. Items represent the nodes and labelled
arcs can be represented with statement, where the content of the
statement is the label of the arc. Arcs can be undirected and use the
CDS-built-in relationship type “related”. Directed arcs are modelled
with “has target”. More formal relationship types can optionally be
created in lower levels of the relationship inheritance hierarchy.

Structuring: One of the most often requested features (five people)
was support for (re-)structuring existing structures: A PKM tool should
help to structure and sort items, be easy to restructure, help to move
from unstructured to more structured, organize pieces of larger text,
and help to categorize items according to existing filing schemes such
as taxonomies, tags, vocabularies and ontologies (survey).

QuiKey is not well suited for re-structuring existing knowledge.
HKW allows refining or changing existing statements, e.g. by
navigating to a statement and changing the relationship type into
something different, e.g. more specific. The auto-completion shows by
default only refinements of the currently selected relation.

In iMapping, the user gets a graphical, zoom-able overview of all
his items and can simply structure his items by drag-and-drop like on a
physical pin board. After grouping related items together and moving
them inside another item, a number of items can efficiently be
manipulated at once. In this regard, iMapping has the same re-
structuring capabilities like e. g. mind-mapping (Buzan, 1991) tools,
but with the added value of spatial hypertext, i.e. the positions of items
are chosen by the user which allows creating very lightweight “piles”
of related items, just like on a physical desk.

Search and query: Besides browsing a user also needs the ability to
search and query the data (Frank, 1988). The CDS back-end offers
queries that let Linda exploit her modelling effort. She could e.g. ask in
QuiKey ((white shark, has sense, ?x) AND (NOT(human, has sense,

18

?x))) to find out that white sharks have a sense for electrical fields that
humans don’t. In systems that do not allow formalising content she
would potentially have to read many articles and build up the query
results in her mind. Semantic queries are especially useful for creating
list of items fulfilling certain criteria. More details about the user
interaction for creating such queries and the query language itself can
be found in Haller (2008).

Formal knowledge: CDS allows to not only structure but also to
formalise knowledge. This allows Linda retrieve e.g. “white shark”
using an expressions like (?x, has type, Lamniformes) although she
never told the system that this is true. She might just have entered
(white shark, has type, Lamnidae) and also (Lamnidae, has supertype,
Lamniformes). This allows the CDS back-end to deduct – using a
standard RDFS reasoning engine – that white sharks also belong to the
Lamniformes. It remains the responsibility of the user to decide which
content should be formalised up to which degree.

Interoperability: To re-use the data in other systems (particularly
other KM systems), Linda needs to export all items and structures into
a common format. The Resource Description Format (RDF, Dan
Brickley, 2004) defines an extensible, graph-based model for
integrating distributed, heterogeneous information sources. The CDS
back-end represents all data (besides binary content) natively as RDF
data.

Related Work
Semantic wikis are designed and used not only for collaborative use but
also for personal knowledge management (cf. Oren, 2005; Oren et al.,
2006). Semantic wikis allow stepwise formalisation of content: First a
page is created, then filled with text, spell-corrected, structured, re-
structured, and linked to other pages. Then links are typed and pages
linked to categories. Ironically, just like with paper-based approaches,
changing things is not that easy in semantic wikis. Tasks such as
renaming a relation require typically an administrator to run scripts
over the database, as the wiki source text of many pages needs to be
changed. Second, a common use-case of PKM tools is the need to
import knowledge from external sources. In most semantic wikis, the
import of semantic data needs to be represented by artificially
generated wiki syntax inserted into pages, which does not integrate
easily with existing content.

Ludwig (2005) sees redundancy within and among documents as a
hurdle to efficient information usage. He questions if documents are the

19

best container for knowledge representations and proposes to work
more direct with redundancy-free semantic knowledge management
systems. In such a system, the traditional notion of a document is
replaced by virtual documents, which render parts of the knowledge
base as an interactive tree.

Bernstein (2006) describes TinderBox, a personal content
management assistant, which offers sophisticated HTML generation
via templates.

Both systems (Bernstein, 2006; Ludwig, 2005) allow end-users to
construct ontologies out of their linked information objects. The same
direction can be observed in the larger fields of semantic desktop
(Decker et al., 2005) and semantic wiki (Völkel and Schaffert, 2006).

Conclusions
In an attempt to create a lean vocabulary for incremental recording

and step-wise formalisation of personal knowledge, we identified a set
of common knowledge structures. These Conceptual Data Structures
were found to be inherent to a variety of different knowledge artefacts
ranging from vague paper notes to highly structured documents.

CDS allows to gradually represent knowledge in various degrees of
formalisation in a uniform fashion. As a lightweight top-level ontology
about relation types, CDS is designed to bridge the gap between
unstructured content like informal notes and formal semantics like
ontologies by allowing the use of vague semantics and by subsuming
arbitrary relation types under more general ones.

It serves two purposes: First, as a guideline for future PKM tools,
providing a set of crucial structural primitives. Second, the RDF-based
representation of CDS can serve as a knowledge exchange format.

The three prototypical CDS front-end tools show the variety of
visualisation and interaction paradigms that can benefit by using this
common data model.

Acknowledgements
Part of this work has been funded by the European Commission in the
context of the IST NEPOMUK IP - The Social Semantic Desktop, FP6-
027705. Another part of this work has been done in WAVES (2008)
funded by BMBF, Germany. The expressed content is the view of the
author but not necessarily the view of any sponsor.

References

20

Alvarado, C., Teevan, J., Ackerman, M.S. and Karger, D. (2003),

“Surviving the information explosion: how people find their

electronic information”, Technical Report AIM-2003-006, MIT AI

Lab.

Bernstein, M. (2006), “Shadows in the cave: hypertext

transformations”, paper presented at Symposium on Interactive

Visual Information Collections and Activity (IVICA), October 1–

2, College Station, TX, USA, available at:

www.csdl.tamu.edu/ivica/papers/L2-2-Bernstein.pdf (accessed 15

January 2009)

Braganza, A. and Mollenkramer, G.J. (2002), “Anatomy of a failed

knowledge management initiative: lessons from PharmaCorp’s

experiences”, Knowledge and Process Management, Vol. 9 No. 1,

pp. 23-33.

Bush, V. (1945), “As we may think”, Atlantic Monthly, Vol. 176, pp.

101-8.

Buzan, T. (1991), Use Both Sides of Your Brain: New Mind-Mapping

Techniques, 3rd ed., Plume, New York, NJ.

Brickley, D. and Guha, R. (2004), “RDF vocabulary description

language 1.0: RDF schema”, [online], available at:

www.w3.org/TR/rdf-schema/ (accessed 16 December 2008).

Davenport, T.H. (2005), Thinking for a Living: How to Get Better

Performances And Results from Knowledge Workers, Harvard

Business School Press, Boston, MA, USA.

Decker, S., Park, J., Quan, D. and Sauermann, L. (Eds) (2005), The

Semantic Desktop – Next Generation Information Management

and Collaboration Infrastructure, [publisher], Galway, Ireland.

21

Despres, C. and Chauvel, D. (2000), Knowledge Horizons: The Present

and Promise of Knowledge Management, Butterworth-Heinemann,

Boston, MA, USA.

Drucker, P.F. (1999a), “Knowledge-Worker Productivity: The Biggest

Challenge”, California Management Review, Vol. 41 No. 6, pp.

79-94.

Drucker, P.F. (1999b), Management Challenges for the 21st Century,

HarperBusiness, New York, NJ.

Engelbart, D. (1963), A Conceptual Framework for the Augmentation

of Man’s Intellect, Spartan Books, Washington, DC, pp. 1-29.

Esselborn-Krumbiegel, H. (2002), Von der Idee zum Text. Eine

Anleitung zum wissenschaftlichen Schreiben, 2nd ed, Schöningh-

Utb, Paderborn,Germany.

Frank, G.H. (1988), “Reflections on notecards: seven issues for the

next generation of hypermedia systems”, Communications of the

ACM, Vol. 31 No. 7, pp. 836-52.

Haller, H. (2006), “iMapping – a graphical approach to semi-structured

knowledge modelling”, paper presented at the 3rd International

Semantic Web User Interaction Workshop (SWUI2006),

November 6, Athens, GA, USA, available at: www.aifb.uni-

karlsruhe.de/WBS/hha/papers/iMapping_SWUI2006_paper.pdf

(accessed 15 January 2009)

Haller, H. (2008), “QuiKey” in Proceedings of the Workshop on

Semantic Search at the 5th European Semantic Web Conference,

Vol. 334, ISSN: 1613-0073, pp. 74-8.

Jacobs, I. and Walsh, N. (2004). “Architecture of the World Wide Web,

Volume One” [online], W3C, available at:

www.w3.org/TR/webarch/ (accessed 16 December 2008).

22

Jones, W. and Bruce, H. (2005), “A report on the NSF-sponsored

workshop on personal information management”, January 27-29,

Seattle, WA, available at

http://pim.ischool.washington.edu/final%20PIM%20report.pdf

(accesed 15 January 2009).

Jones, W., Phuwanartnurak, A.J., Gill, R. and Bruce, H. (2005), “Don’t

take my folders away! : organizing personal information to get

things done”, in van der Veer, G.C. and Gale, C. (Eds), CHI

Extended Abstracts, ACM, pp. 1505–8.

Klyne, G. and Carroll, J.J. (2004), “Resource description framework

(RDF): concepts and abstract syntax” [online], available at:

www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (accessed 16

December 2008).

Ludwig, L. (2005), “Semantic personal knowledge management”,

Technical Report D11.01_v0.01, DERI Galway.

Maier, R. and Schmidt, A. (2007), “Characterizing knowledge

maturing: a conceptual process model for integrating e-learning

and knowledge management”, in Gronau, N. (Ed.), 4th Conference

Professional Knowledge Management – Experiences and Visions

(WM ’07), Potsdam, Vol. 1, GITO, Berlin, pp. 325-34.

Maurer, H. (1999), “The heart of the problem: knowledge management

and knowledge transfer”, in Proceedings of ENABLE’99, Espoo-

Vantaa Institute of Technology, pp. 8-17.

Miller, G. (1956), “The magical number seven, plus or minus two:

some limits on our capacity for processing information”,

Psychological Review, Vol. 63, pp. 81-97.

23

Nelson, T.H. (1995), “The heart of connection: hypermedia unified by

transclusion”, Communications of the ACM, Vol. 38 No. 8, pp. 31-

3.

NEPOMUK (2008), “NEPOMUK – The Social Semantic Desktop”

[online], available at: http://nepomuk.semanticdesktop.org/

(accessed 16 December 2008).

Nonaka, I. (1994), “A dynamic theory of organizational knowledge

creation”, Organization Science, Vol. 5 No. 1, pp. 14-37.

Nonaka, I. and Konno, N. (1998), “The concept of “ba”: building a

foundation for knowledge creation”, California Management

Review, Vol. 40 No. 3, pp. 40-54.

Nonaka, I. and Takeuchi, H. (1995), The Knowledge-Creating

Company: How Japanese Companies Create the Dynamics of

Innovation, Oxford University Press, New York, NJ.

North, K. (2007), “Produktive Wissensarbeit”, paper presented at the 5.

Karlsruher Symposium für Wissensmanagement in Theorie und

Praxis, 11 October, Karlsruhe, Germany..

Oren, E. (2005), “SemperWiki: a semantic personal wiki”, in Decker et

al. (Eds) (2005), The Semantic Desktop – Next Generation

Information Management and Collaboration Infrastructure,

[publisher], Galway, Ireland.

Oren, E. (2006), “An overview of information management and

knowledge work studies: lessons for the semantic desktop”, in

SemDesk (Ed.), Semantic Desktop Workshop, [full date and place,

organisation].

Oren, E., Völkel, M., Breslin, J.G. and Decker, S. (2006), “Semantic

wikis for personal knowledge management”, in Database and

24

Expert Systems Applications, Vol. 4080/2006, Springer, Berlin/

Heidelberg, pp. 509-18.

Polanyi, M. (1966), Tacit Dimension, Routledge and Kegan Paul Ltd,

London.

Schütt, P. (2003), “The post-Nonaka knowledge management”, Journal

of Universal Computer Science, Vol. 9 No. 6, pp. 451-62.

Shneiderman, B. (1989), “Reflections on authoring, editing, and

managing hypertext”, in Barrett, E. (Ed.), The Society of Text:

Hypertext, Hypermedia, and the Social Construction of

Information, MIT Press, Cambridge, MA, pp. 115–31.

Shneiderman, B. (1996), “The eyes have it: a task by data type

taxonomy for information visualizations”, in VL ’96: Proceedings

of the 1996 IEEE Symposium on Visual Languages, IEEE

Computer Society, Washington, DC.

Shneiderman, B. (1998), Designing the User Interface, Addison

Wesley, Reading, MA.

Stankosky, M. (2005), Creating the Discipline of Knowledge

Management: The Latest in University Research, Butterworth-

Heinemann, New York, NJ.

Taylor, F.W. (1911), The Principles of Scientific Management, Harper

and Brothers, New York, NJ.

Völkel, M. (2007). “A semantic web content model and repository”, in

Proceedings of the 3rd International Conference on Semantic

Technologies, JUCS, Graz, Austria, pp. 254-61.

Völkel, M. and Abecker, A. (2008), “Cost-benefit analysis for the

design of personal knowledge management systems”, in Cordeiro

J. and Filipe J. (Eds.), ICEIS 2008 - Proceedings of the Tenth

International Conference on Enterprise Information Systems,

25

Volume AIDSS, Barcelona, Spain, June 12-16, Springer, Berlin,

pp. 95-105.

Völkel, M. and Schaffert, S. (Eds) (2006), Proceedings of the First

Workshop on Semantic Wikis – From Wiki To Semantics, FZI

Forschungszentrum Informatik Karlsruhe, CEUR.ws.

Völkel, M. et al. (2008), “Conceptual data structure tools”, Deliverable

1.2, Nepomuk Consortium.

WAVES (2008), “WAVES: Wissensaustausch bei der verteilten

Entwicklung von Software” [online], available at:

http://waves.fzi.de/bin/view/Public/WavesProjekt (accessed 16

December 2008).

26

Bio Heiko Haller

Heiko Haller works at Forschungszentrum für Informatik, a research institution
specialising in technology transfer. While he mainly deals with using semantic
technologies for knowledge management in general, his special interest lies in
designing cognitively adequate techniques for personal knowledge management. Mr.
Haller has studied cognitive psychology at the Free University of Berlin and is
currently focussing on interaction design and visual knowledge representations. He
wrote his diploma thesis on “Mapping Techniques for Knowledge Organisation” at
Knowledge Media Research Center in Tübingen.

Bio Max Völkel

Max Völkel is working as a PhD student and Research Assistant at the
Forschungzentrum für Informatik (FZI) at the Universität Karlsruhe(TH). His topics
are Personal Knowledge Management, Semantic Web Infrastructure and Semantic
Wikis. He has organised several workshops on semantic wikis (see
http://semwiki.org). He works in the EU-project NEPOMUK to build a next-
generation knowledge articulation tool. He is the author of a number of RDF-based
tools such as RDF2Go (http://rdf2go.semweb4j.org), a triple store abstraction layer.
Currently he works on a semantic web content repository
(http://swecr.semweb4j.org), unifying RDF and Web 2.0 content management. He is
also one of the founders of the Semantic MediaWiki project (http://ontoworld.org).

