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Abstract RDF, a simple yet expressive data model, is widely recognised
as the foundation for the Semantic Web. We revisit the RDF specifica-
tion and analyse five problems: literals are not addressable, blank nodes
are not addressable, reification is not semantically recognised, language
tags are not addressable, and language tags can not be combined. We
introduce SiRDF, a simplified data model with fewer modelling elements
that overcomes the mentioned problems, and formally show its semantic
equivalence to RDF. Based on the lessons of SiRDF we recommend a
restricted usage of RDF that solves the mentioned problems while fully
adhering to the original RDF specification.

1 Introduction

The Semantic Web has evolved, as depicted in the Semantic Web layer cake3.
Attention shifted away from lower layers, such as XML and RDF, to higher
layers, such as the FOAF4 and SIOC5) vocabularies or the RDF Schema [1],
OWL [15] and WSML [2]) ontologies. Still, some modelling issues remain in the
basis of RDF, leading to problems that are not addressed in higher layers.

In this paper we look closely at RDF and identify five problems: (a) the
occurrence of literals is not addressable, (b) blank nodes are not addressable,
(c) reification is not recognised by the formal semantics. (d) language tags are
not addressable, and (e) language tags cannot be combined. Although these
limitations are by design, we show their impact on real world use cases, and
therefore propose how to address and resolve them.

We discuss these problems in detail in Sect. 2 and provide references for the
real-world impact of these modelling issues. In Sect. 3, we introduce a simplified
version of RDF (SiRDF). SiRDF has a smaller data model in terms of modelling
constructs. We proof that SiRDF can correctly represent all RDF statements
and show that SiRDF addresses the discussed problems.

3 http://www.w3.org/DesignIssues/diagrams/sweb-stack/2006a.png
4 http://www.foaf-project.org
5 http://sioc-project.org/
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Proposing SiRDF as a new foundational language for the Semantic Web has
limited practical value. In Sect. 4 we therefore map the SiRDF data model back
to RDF and get “restricted RDF”, a subset of RDF. We show how restricted
RDF solves the aforementioned problems to a large extent.

Some recommendations proposed in Sect. 4 have been suggested before in
best-practices guides, in weblog posts, or in implementation documentation. The
contribution of this paper lies in a thorough analysis of these problems and in a
formally underpinned solution.

2 Issues with RDF

RDF is a language intended for expressing propositions using precise formal
vocabularies [10]. The data model of RDF is a collection of triples (subject,
predicate and object) that together form a graph. The elements of the graph are
either URI references, literals or blank nodes.

URIs have an identifier and can thus be addressed from outside the graph.
Blank nodes are unnamed and can only be addressed from within the graph.
Literals represent values by their lexical representation. Literals can be anno-
tated with a language tag or data type; these annotations are not in the form
of statements, but rather attachments to the literal. URI references are allowed
anywhere in the triple, blank nodes are allowed as subjects and objects, and
literals can only be objects.

The simplicity of RDF was an explicit design goal [12, Sect. 2.2], but as we
explain in this section, the details of the data model and formal semantics lead to
problems that impact real-world use cases. In the remainder of this section, we
identify these issues and illustrate each problem with a concrete example in RDF
from a simple scenario: two persons, Peter and Paula, document information
about themselves in RDF, using the Friend of a Friend (FOAF) vocabulary.

2.1 Literal occurrences are not addressable

We can imagine that Peter documents his online nicknames in his FOAF file.
Since he has more then one nickname, he adds each in a separate triple to his
FOAF file:� �

http://peter.blogger.com/foaf.rdf#me foaf:nickname ”peter1967” .
http://peter.blogger.com/foaf.rdf#me foaf:nickname ”peterTheGreat” .
http://peter.blogger.com/foaf.rdf#me foaf:nickname ”peterLikesFlowers” .� �

At some point in time, since he does not want Paula to find out about his
age and his love for flowers, he changes some of his nicknames:� �

http://peter.blogger.com/foaf.rdf#me foaf:nickname ”peterLikesMasculineThings” .
http://peter.blogger.com/foaf.rdf#me foaf:nickname ”peter1977” .
http://peter.blogger.com/foaf.rdf#me foaf:nickname ”peterTheGreat” .� �

Paula could try to use a revision control system to find out which nicknames
were changed, but since RDF graphs do not have any mandated serialisation



order, the order of the triples could change arbitrarily leading to many false
positives in a standard revision control system.

RDF defines literals as lexical representations of numbers and strings, which
can not be addressed, because they have no identity. Therefore changes to oc-
currences of literals can not be tracked properly.

2.2 Blank nodes are not addressable

Peter wants to describe his friends in his FOAF file. He met somebody online,
and only knows the person by the online nickname “tinysushi”:� �

http://peter.blogger.com/foaf.rdf#me foaf:knows :1 .
:1 foaf:nickname ”tinysushi” .� �
Paula also knows a person only by the online nickname “bigsteak”:� �

http://paula.typepad.com/foaf.rdf#me foaf:knows :76 .
:76 foaf:nickname ”bigsteak” .� �
In order to compare the acquaintances of Peter and Paula, the information

from their FOAF files has to be merged. It is not possible to decide whether
Peter and Paula know the same person by different nicknames or whether these
are two different people.

The reason for this, is that the RDF semantics treat blank nodes only as
existentially quantified variables (scoped to the entire graph) in the RDF graph
in which they occur. Thus blank nodes are only unified if the two graphs contain
the exact same set of assertions about them, which is in reality rarely the case.
Furthermore, blank nodes cannot be referenced directly from outside their graph.

Although OWL [15] offers ways to address blank nodes by defining inverse
functional properties, such indicators are domain-specific and not always avail-
able in practice. Systems giving an object-oriented representation of an RDF
graph, such as ActiveRDF [16] or RDFReactor6 have to manage blank node
identity by themselves. Similarly, in SPARQL query results, blank nodes cannot
be referenced in future queries.

Tracking changes in RDF graphs is relevant in many scenarios since data
often changes. Ontology evolution [7] and ontology versioning systems therefore
need ways to address literals, blank nodes, and statements. E. g. the ontology
versioning system SemVersion [19] attaches automatically generated identifiers
as inverse functional properties to each blank node, in order to identify them.

2.3 Statements can not be addressed

Paula finally discovers Peter’s true age, through another source. Not able to
change Peter’s FOAF file, she wants to announce herself as the author of this
discovery in her own FOAF file, using reification.

6 http://rdfreactor.ontoware.org



� �
http://peter.blogger.com/foaf.rdf#me foaf:dateOfBirth ”1967/5/21”ˆˆxsd:date .
:9 rdf:type rdf:Statement .
:9 rdf:subject http://peter.blogger.com/foaf.rdf#me .
:9 rdf:predicate foaf:dateOfBirth .
:9 rdf:object ”1967/5/21”ˆˆxsd:date .
:9 dc:author http://paula.typepad.com/foaf.rdf#me .� �
Peter finds several FOAF files online, including Paula’s, and merges them

with his own. He now discovers that his real birthday is stated in one of the
FOAF files. Curious about the origin of this information, he tries to find out
more about it.

Given RDF semantics, there is no way for him to look up information about
a given statement (s, p, o) as there is formally no relation between a triple and
one of its reified counterparts. Although the semantics describes informally, that
applications could treat the reification triple and the real triple as the same
entity, this interpretation is not mandatory and not formally specified.

Reification (mentioning a statement without asserting it) is used heavily in
agent communication systems [13] that model parts of human speech, such as
propositional attitude, modalities, beliefs and indirect speech. One such system is
DBin [17], which allows sharing of semantically annotated information on a peer
to peer basis, and supports distinguishing between information from different
authors.

2.4 Language tags are not addressable

The RDF specification recognises the need to localise strings into different lan-
guages, and introduces the notion of “language tags” [12, Sect. 3.4]. These tags
describe that a certain string literal is written in a certain language, and can
be used to localise user interfaces to display information in the user’s preferred
language.

For example, the DOAP7 project description schema provides labels for
properties such as “programming language” and “operating system” in English,
French, and Spanish. Language tags are (in N3 syntax) appended to the literals:� �

doap:os rdfs:label ”operating system”@en .
doap:os rdfs:label ”sistema operativo”@es .� �

These language tags are simple strings, that conform to RFC-30668. As such,
they are not addressable inside the RDF model: they are attached to the literal
but nothing can be said about them. This leads to four problems: (a) it is im-
possible to indicate relations between language tags and other concepts, e. g.
“nl” is used in the Netherlands, (b) it is impossible to indicate relations between
language tags, such as the fact that “en” is a superset of “en-US”, “en-GB” and
“en-AU”, (c) it is impossible for people to indicate in RDF their language prefer-
ences, except through simple strings having no formal relation to language tags,
and (d) it is impossible to find e. g. all French literals, relevant when translating.
7 http://usefulinc.com/doap
8 http://www.isi.edu/in-notes/rfc3066.txt
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2.5 Language tags can not be combined

Language tags are not part of the data model, they are only attachments to
literals. Therefore they cannot be combined, but only used once for each string
literal. For example, if we want to express that the name of a company is “Mi-
crosoft” in both English, Dutch, and Spanish, we have to use three literals:� �

http://microsoft.com# rdfs:label ”Microsoft”@en .
http://microsoft.com# rdfs:label ”Microsoft”@nl .
http://microsoft.com# rdfs:label ”Microsoft”@es .� �

We could use a single literal if the company’s name would be identical in
every language, but often different company or product names are used in dif-
ferent regions. Thus, correctly representing Microsoft’s name would lead to a
high redundancy, which would lead to maintenance problems when renaming or
restructuring a company or product.

3 Solution: SiRDF

After having introduced the problems, which are rooted in the abstract syntax
and formal semantics of RDF, we will show how these problems might be ad-
dressed by the introduction of a new and simplified data model, called Simple
RDF (SiRDF).

In this section, we provide an abstract syntax, formal semantics and new vo-
cabulary for SiRDF, with the benefits of the simpler data model, while retaining
the same expressivity as RDF. We explain the general principles behind SiRDF
and show how the new data model allows us to solve the identified problems.
Finally we proof that one can express everything in SiRDF that can be expressed
in RDF.

The main idea behind SiRDF is a simplification of the RDF data model. An
SiRDF graph contains only nodes and statements. To keep the expressivity of
RDF language tags, datatypes and blank nodes have to be expressed through or-
dinary statements in the SiRDF graph. This shift from a complex data model to
a simplified data model with an additional vocabulary, will lead us to suggestions
for RDF best practices in 4.

Principles The interpretation of an SiRDF model is based, as in RDF, on
a mapping from the vocabulary to the universe of the interpretation, and an
extension over the universe which defines the pairs of resources for which a
predicate holds true. As in RDF, this separation enables us to use the vocabulary
to describe a possible state of the world, and to check, using the interpretation,
whether this state is a valid state of the model. We do this by computing the
truth value of all statements in the graph.

The difference to RDF is that in SiRDF every part of the graph is first
mapped to a URI, which is in turn mapped to the universe. In contrast, in RDF
certain entities (such as literals) are direct subsets of the universe. As a second
contrast to RDF, SiRDF unifies URI references, blank nodes and literals into



one single entity: the node. Each node has an URI reference and an optional
value, and every statement is identifiable by a URI reference.

Vocabulary SiRDF has only one kind of node and only one kind of statement.
Language tags and data types are expressed in regular statements with the
predicates sirdf:datatype and sirdf:languagetag. For reification, a node is
declared as rdf:type sirdf:Statement. Then, similarly to the RDF reification
vocabulary, this node can use the predicates sirdf:subject, sirdf:predicate,
and sirdf:object. To express our examples, we will use the following notation
for each SiRDF statement in this paper:� �

statementURI (subjectURI ”optional value” predicateURI ”optional value” objectURI ”optional value”).� �
3.1 Solving the Problems of RDF

We will now show, how SiRDF addresses the earlier identified issues. We illus-
trate our points by applying SiRDF to the introduced example scenario: Peter
and Paula migrate their FOAF files to SiRDF.

Occurrence of literals is addressable Peter puts all of his nicknames into
his FOAF file using SiRDF, which results in the following statements:� �

peter:statement1 ( peter:me foaf:nickname peter:literal1 ”peter1967” ).
peter:statement2 ( peter:me foaf:nickname peter:literal2 ”peterTheGreat” ).
peter:statement3 ( peter:me foaf:nickname peter:literal3 ”peterLikesFlowers” ).� �

After publishing the new file for the first time, he remembers Paula and
changes two literals:� �

peter:statement3 ( peter:me foaf:nickname peter:literal3 ”peterLikesMasculineThings” ).
peter:statement1 ( peter:me foaf:nickname peter:literal1 ”peter1977” ).
peter:statement2 ( peter:me foaf:nickname peter:literal2 ”peterTheGreat” ).� �

With SiRDF Paula can keep track of changes to a certain literal, because
every occurrence of a literal is identified by a URI reference. Paula now can see
that “peter1967” changed to “peter1977” and that the flowers are replaced by
masculine things.

SiRDF does not distinguish between URI references and literals: both con-
cepts have been unified into the new concept of a node. Each node has the
properties of both, a URI reference and a value to hold the lexical representa-
tion of a literal. The value can be left empty, so that only the URI reference of
the node is used. Therefore every value of a node can be identified by the URI
reference of the same node.

Blank nodes are addressable Blank nodes have been merged into the concept
of the node, together with URI references and literals. Thus, when Peter first
meets “tinysushi” online, he wants to record this in his SiRDF FOAF, without
using a blank node. Instead of creating a URI reference as a place holder he asks
“tinysushi” for a URI, and uses that:



� �
peter:statement4 ( peter:me foaf:knows hank:me ).
peter:statement5 ( hank:me foaf:nickname peter:literal4 ”tinysushi” ).� �

Paula meets somebody called “bigsteak” online, but she gets no other de-
tails about the person. She asks the person about his FOAF file, and puts the
information into her own FOAF file.� �

paula:statement1 ( paula:me foaf:knows hank:me ).
paula:statement2 ( hank:me foaf:nickname paula:literal1 ”bigsteak” ).� �

If the information from the FOAF files of Peter and Paula get merged, they
will discover that they know the same person and that this person is known by
two different nicknames. An SiRDF node can be used instead of a blank node.
The URI reference of the node can be used to identify the node, including from
another graph. Eliminating blank nodes by mandating the exclusive usage of
URI references, is the same as renaming all blank nodes with URI references
through skolemisation, as suggested by the RDF semantics.

Statements can be addressed Paula can publish Peter’s true age in her
SiRDF FOAF file. Since Paula can address every statement made by her or
others, she can express her authorship easily. When Peter merges his FOAF
file with Paula’s file, he can discover the author of that statement directly, by
querying for statements with paula:statement3 as the subject.� �

paula:statement3 ( peter:me foaf:dateOfBirth paula:literal2 ”1967−05−21” ).
paula:statement4 ( paula:literal2 ”1967−05−21” sirdf:datatype xsd:date ) .
paula:statement5 ( paula:statement3 dc:author paula:me ).� �

The reason for this, is that every SiRDF statement must have an URI ref-
erence, which gives it an identity and which makes it addressable. Note that
the same statement may appear multiple times with different URIs. Formally,
the statement is simply true. On a higher level, this enables different sets of
annotations about the statements.

Language tags are addressable Instead of introducing new model elements,
SiRDF expresses language tags and datatypes of literals through a special vo-
cabulary. Since all literals in SiRDF are addressable we can make statements
about them, such as their datatype or language. The language tags themselves
are URIs, similarly to earlier designs910.

Paula can express in SiRDF, that American and British English are forms of
English, she can say that Dutch is spoken in the Netherlands (using the geonames
ontology), and indicate her own proficiency in Dutch:� �

paula:statement6 ( lang:en−US rdfs:subClassOf lang:en ).
paula:statement7 ( lang:en−GB rdfs:subClassOf lang:en ).
paula:statement8 ( lang:nl lang:spokenIn http://sws.geonames.org/2750405/ ).
paula:statement9 ( paula:me lang:reads lang:nl ).� �

9 http://www.w3.org/DesignIssues/InterpretationProperties.html
10 http://www.ninebynine.org/IETF/URNs/draft-klyne-urn-ietf-lang.html
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Language tags can be combined Again, since on the one hand, language tags
are not data model elements but are expressed similar to any other property,
and on the other hand, all literals have a URI, we are now able to express that
the same literal applies to several languages:� �

paula:statement10 ( http://microsoft.com# rdfs:label paula:mslabel ”Microsoft” ).
paula:statement11 ( paula:mslabel lang:lang lang:en ).
paula:statement12 ( paula:mslabel lang:lang lang:es ).
paula:statement13 ( paula:mslabel lang:lang lang:nl ).� �

3.2 Proof of Equivalence

We will now provide the formal definitions of SiRDF. Afterwards we will show
that it is possible for an SiRDF model and an RDF model to have the same
denotation and the same interpretation.

Equivalence sketch We first sketch the main part of that equivalence proof, by
describing how each RDF model element relates to an SiRDF model element. The
full conversion algorithm, in both directions, is given in [11]. As shown in table 1,
the conversion from RDF to SiRDF is straightforward: each URI reference, blank
node, and literal is represented with an SiRDF node. For blank nodes and literals,
new URIs have to be given or automatically created. Nodes stemming from
literals have a value, other nodes have no value. Language tags and datatypes
are attached to (the occurrence of) a literal using regular statements.

RDF SiRDF explanation

<uri> (uri) node without value
:#1 (bnode-uri) unvalued node, with new URI
"literal" (literal-uri "literal") node with new URI and value
"literal"@lt literal-uri lang:lang lang:lt . statement about literal’s language tag
"literal"4ype literal-uri sirdf:datatype type . statement about literal’s datatype

Table 1. Converting between RDF and SiRDF

SiRDF formal definition We now briefly introduce the data model, abstract
syntax, and formal semantics of SiRDF.

Definition 1 (SiRDF graph). An SiRDF graph consists of nodes and state-
ments. A statement has a unique identifier and contains three nodes: a subject,
predicate and object. Each node has a unique identifier and optionally a value.

Definition 2 (Abstract syntax). An SiRDF graph G = (S, N) contains the
set of statements S and the set of nodes V . A node N = (U, V ) consists of a
URI U and a value V , where U and V are disjoint subsets of the vocabulary on



which the graph is defined. A statement is St = (U, {N,St}× {N,St}× {N,St},
where U is a URI reference, each triple element (subject, predicate, and object)
is either a node or a statement.

We now define the formal semantics which are as close to their RDF counter-
parts as possible, while taking the simplifications of the SiRDF data model into
account. We start with the definition of the constituents of the interpretation
I(). The mappings constitute the interpretation and describe a model of reality.

U L V

paula:me

peter:me

peter:literal1

foaf:knows
"tinysushi"

IL()

2

1

3

IR

4

5IExt()

SExt() s
p
o

Figure 1. Illustration of the Interpretation of an SiRDF Graph

Definition 3 (Interpretation of an SiRDF graph).
The vocabulary V is the set V = U ∪ L, U and L are disjoint. U is the set

of URI references. Every node or statement is identified by an URI reference
u ∈ U . L is the set of literals (or values). IL : L 7−→ U is an injective function,
which assigns every literal to an URI reference. SExt : U 7−→ (U × U × U) is
an injective function from the set U of URI references into the set of triples,
constructed from U .

The interpretation I on the vocabulary V is defined by: the set IR (universe)
of all resources in I; the injective function IS : U 7−→ IR from the URI refer-
ences onto the universe of I; and the mapping IExt : IR 7−→ (IR × IR) from
the universe IR onto IR× IR, the set of all pairs in IR.

We now define the denotation of an SiRDF graph, which is a truth value
based on the interpretation of all statements in the graph.

Definition 4 (Denotation of a SiRDF node). Let E be a node with value
W and the URI reference U , then I(E) = IS(U) (applied to the parts W and U
of the node, I(E) = I(U) = I(W ) = IS(U) holds true).

Definition 5 (Denotation of a SiRDF statement). Let E be a statement
with the URI reference U and the URI references s, p, o which get resolved
through SExt(U) = (s, p, o). Then the denotation of E is given through:

I(E) = IS(s), IS(p), IS(o) ∈ IR (1)
∧(IS(s), IS(o)) ∈ IExt(IS(p)) (2)



Definition 6 (Denotation of a SiRDF graph). Let E be an SiRDF graph,
I(E) = false ⇐⇒ ∃a ∈ E : I(a) = false, otherwise I(E) = true.

Proof of expressive equivalence We will now show in a formal way that it
is possible to express everything in SiRDF, that can be expressed in RDF. The
formal semantics of SiRDF have been constructed to be as similar to RDF as
possible. This will be used to define what conditions have to be meet in order for
an SiRDF and an RDF graph to have the same interpretation and denotation.

By basing the interpretation of an SiRDF graph on the interpretation of
an RDF graph, we can define the conditions under which the denotation and
interpretation of an SiRDF graph and an RDF graph are equal:

Definition 7 (Conditions for equal interpretation of an SiRDF graph
and of an RDF graph).

Let IR be an interpretation over an RDF graph, defined as in [10, Sect. 1.3]:
IR is based upon the vocabulary V , the universe IR and the properties IP ⊂ IR,
which are defined through the mappings IExt(), IS() and IL(). The extension
of I to handle blank nodes is A(). The denotation of the RDF graph then is given
through the definitions in [10, Sect. 1.4] and [10, Sect. 1.5].

Let further IS be an interpretation of an SiRDF graph, as in definition 3.
Parts of IS, that are equal in IR: the vocabulary V , the universe IR, the mapping
IExt() from predicates to pairs in the universe IR (which describes whether a
predicate holds true over a subject and object) and the mapping IS() from URI
references to IR, which maps URI references to “things” in the universe.

Parts of IS, that are different from IR: the vocabulary V is split into the
disjoint subsets: U of URI references in V and L of values in V ; the mapping
ILS(), which maps every value from L to its corresponding URI reference in U ;
the mapping SExt(), which maps the URI reference addressing a statement, to
the URI references of its subject, predicate and object.

Given these conditions, the interpretations IR and IS have the same truth
values.

Now we will prove that, given these conditions, the interpretation of an
SiRDF graph and of an RDF graph are the same. This means, that it is possible
to express everything in SiRDF, that can be expressed in RDF, and vice versa.

Definition 8 (SiRDF =⇒ RDF). Let IS(a) = true hold for a statement a
from an SiRDF graph, and let s,p,o be defined through SExt(a) = (s, p, o). Then
IR(spo) = true iff:

1. s, p, o ∈ V : SExt() maps every statement a to a triple of uri references, and
because U ⊂ V the condition holds.

2. IR(p) ∈ IP : Because p ∈ U , then also IR(p) = IS(p) = IS(p) ∈ IP ⊂ IR
3. (IR(s), IR(o)) ∈ IExt(IR(p)): Because s, o ∈ U , then also (IR(s), IR(o)) =

(IS(s), IS(o)) = (IS(s), IS(o)). Further IR(p) = IS(p) = IS(p) and also
(IR(s), IR(o)) ∈ IS(p), therefore: (IR(s), IR(o)) ∈ IR(p)



Definition 9 (RDF =⇒ SiRDF). Let IR(s, p, o) = true for a triple (s, p, o)
in the RDF graph. If the SiRDF graph contains a statement a with SExt(a) =
(s, p, o), then IS(a) = true iff: IS(s), IS(p), IS(o) ∈ IR ∧ (IS(s), IS(O)) ∈
IExt(IS(p)). Since every predicate is a URI reference, IS(P ) ∈ IR. Let n be
the subject s or the object o, then depending on the type of n:

– URI reference: IR is the same for IS and IR, so IR(n) = IS(n)
– simple literal: Let E be a simple literal. Choose u ∈ U so that ILS(p) = u

and IS(u) = p. Then IS(n) = IS(U) = IS(ILS(n)) ∈ IR holds true.
– literal with datatype or language tag: Let E be a literal with a datatype or

language tag. This is a given: ILR(n) ∈ IR. Now we can choose u ∈ U so that
ILR(n) = IS(u) and ILS(n) = u. Then ILR(n) = IS(u) = IS(ILS(n)) ∈
IR holds true.

– blank node: Let E be a blank node. Then for IR as given in [10, Sect. 1.5]:
[IR + A](n) = A(n) and A(n) ∈ IR. Choose u ∈ U so that IS(u) = A(n).
Then IS(n) = IS(u) = A(n) ∈ IR holds true.

3.3 Merging SiRDF graphs

An important feature of RDF graphs is the possibility of merging: graphs without
blank nodes are merged through the set union of their triples, while for graphs
with blank nodes the set union is performed while ignoring the blank node
identifiers. To merge two SiRDF graphs S1 and S2, we first translate both to
their RDF counterparts R1 and R2, merge those to R3, and translate that graph
back to the SiRDF graph S3.

4 Solution: Restricted RDF

Since changing the RDF standard is not a practical solution, this section con-
tains the most practical contribution of this paper: we show how to represent
the SiRDF-ideas using the given RDF abstract syntax and show how these rec-
ommendations resolve the introduced problems. SiRDF has demonstrated that
a simpler data model can have the same expressivity as a richer data model, if
the missing data model parts can be expressed through usage of the vocabulary.
The main idea behind our recommendations, is to restrict the usage of the RDF
data model.

4.1 Addressing the occurrence of literals

Peter is eager to try out restricted RDF, and he puts all his nicknames in a
FOAF file using RDF, but seeing SiRDF has given him an idea:� �

http://peter.blogger.com/foaf.rdf#me foaf:nickname http://peter.blogger.com/foaf.rdf#literal1 .
http://peter.blogger.com/foaf.rdf#literal1 rdf:value ”peter1967” .
http://peter.blogger.com/foaf.rdf#me foaf:nickname http://peter.blogger.com/foaf.rdf#literal2 .
http://peter.blogger.com/foaf.rdf#literal2 rdf:value ”peterTheGreat” .
http://peter.blogger.com/foaf.rdf#me foaf:nickname http://peter.blogger.com/foaf.rdf#literal3 .
http://peter.blogger.com/foaf.rdf#literal3 rdf:value ”peterLikesFlowers” .� �



Changes to his nicknames can now be tracked by the URI references to
which these literals are attached. Peter can use the rdf:value term, although
it currently has no formal meaning in the RDF semantics. Using rdf:value we
can thus address literals. In fact, this solution is very close to the solution in
SiRDF, which combines literal values and URI references in the concept of a
node. A URI with an rdf:value can actually be considered both a URI and a
literal, and interpreted similarly to the interpretation in SiRDF.

4.2 Addressing blank nodes

Peter wants to add somebody to his FOAF file, about whom he knows only
the nickname “tinysushi”. Restricted RDF discourages usage of blank nodes, so
Peter has to ask his friend for his URI:� �

http://peter.blogger.com/foaf.rdf#me foaf:knows http://hank.vox.com/foaf.rdf#me .
http://hank.vox.com/foaf.rdf#me foaf:nickname ”tinysushi” .� �

Paula meets somebody called “bigsteak” online, and also asks him for a URI:� �
http://paula.typepad.com/foaf.rdf#me foaf:knows foaf:knows http://hank.vox.com/foaf.rdf#me .
http://hank.vox.com/foaf.rdf#me foaf:nickname ”bigsteak” .� �

hank:me

tinysushi
peter:

me

foaf:knows

paula:
me

foaf:knows Paula`s FOAF File

Peter`s FOAF File

bigsteak

foaf:nickname
foaf:nickname

Figure 2. Discouraging blank nodes can result in better information sharing

When merging their files, Peter and Paula will again discover that they know
the same person under two different nicknames. Peter and Paula could also have
chosen two different URIs for their friend, and would not so easily find out that
he is the same person. If they do find this out later, they can represent that with
vocabulary such as owl:sameAs and owl:InverseFunctionalProperty [15].

4.3 Reification semantics: enabling statement addressing

Paula wants to state Peter’s date of birth in her FOAF file, but in a responsible
way. So she will declare herself as the author of this information:� �

http://peter.blogger.com/foaf.rdf#me foaf:dateOfBirth ”1967/5/21”ˆˆxsd:date .
http://paula.typepad.com/foaf.rdf#42 rdf:type rdf:Statement .
http://paula.typepad.com/foaf.rdf#42 rdf:subject http://peter.blogger.com/foaf.rdf#me .
http://paula.typepad.com/foaf.rdf#42 rdf:predicate foaf:dateOfBirth .
http://paula.typepad.com/foaf.rdf#42 rdf:object ”1967/5/21”ˆˆxsd:date .
http://paula.typepad.com/foaf.rdf#42 dc:author http://paula.typepad.com/foaf.rdf#me .� �



After merging the information from multiple FOAF files, and discovering his
birth date, Peter will want to know, who is the author of this information. If
a reification triple and a real triple with the same content exist, these should
be linked by the formal semantics. Then Peter can look for anybody claiming
authorship of the statement and decide whether to trust this information.

The missing part in the (formal) RDF semantics specification, is the asso-
ciation between the triple, the reified triple of the same contents and the URI
reference of the reified triple. Formally stated, these three entities in the graph
have to denote the same thing in the universe. Another approach to give ad-
dressing semantics to statements, would be to use named graphs [3], which are
commonly used to track provenance. If each named graph would contain only one
triple, the name of the graph could be used as address of the triple itself, allow-
ing efficient reification. Both named graphs and reification can be implemented
using quad patterns (as in YARS [9]).

4.4 Language tags are addressable

Regarding the language tags, we can directly apply the solution of SiRDF to
common RDF. Instead of using language tags as distinct model elements we
introduce a simple vocabulary for these tags, promote language tags to normal
URIs, and use normal triples to express language-related information:� �

lang:en−US rdfs:subClassOf lang:en .
lang:en−GB rdfs:subClassOf lang:en .
lang:nl lang:spokenIn http://sws.geonames.org/2750405/ .
paula:me lang:reads lang:nl .� �

4.5 Language tags can be combined

Since we can address literals, through the explained usage of rdf:value, we can
describe various properties of the same literal, allowing us to combine language
tags for a single literal without repeating the literal:� �

http://microsoft.com# rdfs:label paula:mslabel .
paula:mslabel rdf:value ”Microsoft” .
paula:mslabel lang:lang lang:en .
paula:mslabel lang:lang lang:es .
paula:mslabel lang:lang lang:nl .� �

5 Related work

Other extensions to RDF have been proposed. Mazzieri [14] describes how to
augment RDF with fuzzy semantics. Gutierrez [8] restricts the truth value of
a statement for given time intervals. Similar to our approach, they introduce
vocabularies to represent the additional semantics as RDF statements; on the
other hand, they target the specific problem domains of fuzzy and temporal
reasoning. The idea to address literals can be found in the RDF specification



itself, as each literal entails the existence of a blank node [10, Sect. 4.3]. Early
implementations of RDF used this technique internally11. We follow this idea
and mandate such usage.

Tummarello et al. [18] and Ding et al. [6] both suggest methods for splitting
a graph into self-describing fragments, which then can be compared to decide if
merging is possible. These two approaches solve the problem of merging incom-
plete information for some cases, but not all; we argue that this problem should
be solved before putting the information into an RDF graph.

We identified the need to mandate a link between a statement and its reifi-
cation statement, but we did not provide a formal semantics for it. Conen et al.
[5] add identification semantics to reified statements and prove the compatibility
with current RDF semantics; we see this work as complementary to ours.

Finally, treating language tags as first class entities in the graph, has been
advocated before by Carroll and Phillips [4]. Their solution relies partly on OWL,
and therefore is more expressive but also more complex then ours.

6 Conclusions

We have analysed and discussed five modelling issues in RDF. We resolved these
issues by simplifying the RDF data model into SiRDF. SiRDF moves language
tags and data types from the model into the vocabulary, and makes all literals
and statements addressable, while keeping the same expressivity as RDF.

SiRDF is simpler than RDF: there are less concepts to learn and less concepts
to implement. By giving every concept an identifier we also enhance the meta-
modelling capabilities of RDF: one can now for example describe relationships
between language tags. Since changing the already deployed RDF infrastructure
is unrealistic, we then presented restricted RDF as a way of modelling the simpli-
fied data model of SiRDF with a subset of the RDF data model; the missing parts
are expressed through a new vocabulary. Table 2 summarises the recommended
changes and the responsibilities for implementing the recommendations.

element change responsibility

URI reference unchanged –
blank node discouraged modeller
literal use rdf:value modeller
language tag use lang:lang modeller
datatype use sirdf:datatype modeller
reification mandatory semantics implementations

Table 2. Overview of changes

11 http://lists.w3.org/Archives/Public/www-rdf-interest/2001Feb/0090.html

http://lists.w3.org/Archives/Public/www-rdf-interest/2001Feb/0090.html
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