
Modelling Higher-Level Thought
Structures – Method & Tool1

Max VÖLKEL, Heiko HALLER, Andreas ABECKER

FZI Forschungszentrum Informatik,
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

Email: {voelkel,haller,abecker}@fzi.de Web: http://www.fzi.de

Knowledge articulation costs are the bottleneck for efficient Personal Knowledge
Management (PKM). Current tools either allow to few structures and hence have to
rely only on keyword searches in plain text, allow no associative browsing, and
cannot infer new knowledge. Semantic modelling tools on the other hands are too
cumbersome to use and force the user to formalise everything all the time – this is
too costly in PKM usage.

Conceptual Data Structures (CDS) are what is found to be the largest common
denominator of information structures used in common knowledge artefacts. CDS
allow step-wise and gradual formalisation and representing the spectrum from
informal notes up to formal ontologies.

This paper describes the CDS data model and ontology in detail and shows how
CDS can largely be implemented with existing semantic web technologies.

1. Introduction
There is a wealth of methods and tools that facilitate our every-day Personal Knowledge
Management (PKM). They range from hand-written paper notes to personal semantic wikis
and from mere text processing or spreadsheet applications over special outlining tools to
nice and colourful graphical mind-mapping applications. They all have one thing in
common: They help the user externalise knowledge in a more or less structured way.
 According to Nonaka and Takeuchi [1], externalisation is the articulation of tacit
knowledge that resides in someone's mind and is often only vague, into explicit knowledge
that can be communicated. The act of externalisation is one of the four conversions in their
widespread model of the knowledge creating process, and it is the step that must come
before any piece of knowledge can be externally stored or even processed by a computer.
 Although explicit, externalised knowledge still varies largely in its degree of
formalisation. It can be anything between a loose collection of keywords, a weakly
structured text, an informal graph or hypertext up to highly structured knowledge
representations and fully formalised ones like an ontology.
 The more structured such information, the easier it can be accessed. A highly structured
information collection is easier to navigate, yields more accurate search results, and has
more export options to other formats. On the other hand, more structure requires a higher
effort during creation in the first place. For many uses however, a weak structure is
sufficient (e.g.: “This issue needs to be solved before that one.”, “These topics are somehow
related to those.”, “When I look for this address I should not forget this note”). CDS allows
to express and use these semi-formal semantics—as well as no or fully formalised

1 This material is based upon works supported by the European Commission under the Nepomuk project FP6-
027705.

semantics. Gradual transitions from no formal semantics up to fully formalised semantics
are thus possible. This is the core feature of the CDS model.

2. Objectives
In this paper we present the motivation for and ideas behind Conceptual Data Structures
(CDS), a lean vocabulary for incremental recording and step-wise formalisation of personal
knowledge, first described in [2]. We found these structures to be inherent to most
knowledge artefacts ranging from vague paper notes to highly structured documents. CDS
is suitable for representing knowledge in various degrees of formalisation in a uniform
fashion, allowing gradual migration.
 One can distinguish between domain-specific data models such as the data model of e.g.
Microsoft Outlook, which limits the user to speak about persons and their addresses. There
is neither a way to state the relation to other persons, nor to represent music collections or
relations from persons to other objects. This is exactly the characteristic of domain-speficic
tool: They usually support data modelling in a given domain well but do not allow to extend
the model or link to other objects in other data models. Domain-free data models such as
the file system or the model behind mind map applications allow to model any domain, but
not in a structured way. It is, e.g. not possible to export a set of persons created in e.g. a
Mind Mapping application to an address book application. CDS is intended to unify
dominant domain-free data models and allow at the same time to represent structured,
domain-specific data in such a way that domain-specific semantics can be used for
inference, search and export.
 There are two levels of semantics that CDS intends to support. First, formal semantics
can be used by the computer to infer new knowledge. This works only for semantics
expressed within formal languages such as OWL or RDFS for which reasoning engines are
already available. Second, many ad-hoc structures used in documents (e.g. colour and
formatting) and mind maps (e.g. attached icons) carry semantics for humans but can not
(yet?) be used for logical inference—unless mapped to existing formal construct. It is the
aim of CDS to let the user profit from formal annotations more easily. CDS makes mapping
of user-semantics to formal semantics easier by allowing the user to use less expressive,
vaguer semantics. E.g. sometimes it is easy to say that two items are related but it is hard to
say how. The CDS vocabulary is described in detail in Sec. 4.

2.1 Related Work:

Existing knowledge representation languages are very general (RDF, RDFS, Topic Maps,
OWL, Conceptual Graphs) and feature few semantic relations suited to directly model and
structure personal knowledge. Dealing with them requires quite a technical mindset, e.g.
thinking about the distinction between literals, blank nodes and URIs (RDF, OWL).
Existing vocabularies and ontologies (SKOS, IBIS) are too domain-specific to model
arbitrary personal knowledge.

3. Business Case Description
The usual way to use CDS is: A user creates a number of text items, comparable to
brainstorming with sticky notes on a whiteboard. Then she groups these snippets and
connects them with arrows. Later she specifies these relationships by labelling the arrows.
After a while, she might see that some items share common characteristics and assigns
them to one or more types such as “Person”, “Idea” or “ToDo”. These types can be
exploited for search, e. g. “give me all Persons in Karlsruhe”. Arcs are classified in a
similar fashion and can be typed with Relations such as “knows” or “part of”.

3.1 Document Creation

Our society is heavily based on communication by documents, ranging from books to
emails. But in practice, few documents are written directly in a text editor in a linear one-
pass fashion. Instead, different tools are employed for different degrees and kinds of
structures (e.g. notes about the idea, outline, argumentative structure, list of references,
quotations from other sources).
 For each level of formalisation, different tools are suitable. But since no single tool is
optimal for all stages, external knowledge—especially while being articulated and
formalised—often goes a long way, traversing different media and tools while subsequently
approaching its final structure.
 The process of writing a document, as we have it in mind, could be like this: Text
snippets are created and structured in a textual interface (like a Semantic Wiki). The
structuring could take place by simple wiki syntax (e.g. for nested lists etc.) and a
semantically enriched link syntax, to explicitly state CDS and other typed relations where
desired by the advanced user. But even without these, simple document structures imply
many structural decisions: e.g. order and hierarchy of each single line of text have been
assigned. As a next step, the CDS data could be restructured and refined in a graphical user
interface.

3.2 Personal Information Management (PIM)

PIM usually means managing contact information, appointments, to-do items and notes. In
fact, CDS grew out of frustration encountered with the existing PIM toolscape and the
inability to relate, link and describe PIM items. For example, one can currently not even
relate a number of contacts, appointments and tasks to a project. In particular, plain text
notes are in most PIM tools merely an unstructured, unrelated set of memo items. Wikis
offer better linking abilities but come at the cost of not being able to represent specific types
of items, such as appointment or contact data. Semantic wikis meet both requirements but
are still to cumbersome to use, i.e. it is hard to get an overview of the emerging structure
and refactoring is very costly.

4. Methodology
We analysed the structures inherent to common knowledge artefacts like documents, paper
notes, hypertexts; structures exposed by common information management tools like file
browsers (e.g. the Windows Explorer), mind-maps, concept maps, note-taking applications,
and more advanced PKM tools like e.g. Haystack [3]; structures built-in to programming
languages (e.g. Java Collection Framework) and content languages (e.g. XML, RDF and
HTML); popular Web 2.0 sites for collaborative information organisation (e.g. del.icio.us2
and flickr3).
 We found that there is a relatively small set of types of structural relations between
information items, which occur very often in all of these paradigms. We grouped these
relation types according to different dimensions that they describe. Finally the more
specific ones of these relations were subsumed under the more general ones depending on
how generic they are. This hierarchy of relations is the basis of the CDS ontology.

2 http://del.icio.us
3 http://flickr.com

5. Technology Description
CDS consists of two parts: A data model (analogous to RDF) and the CDS core ontology
expressed within the CDS data model. Data expressed within the CDS data model and
aligned with the CDS core ontology is called a user model.

5.1 Requirements

The CDS data model is based mostly on the OMG meta-modelling standard with a mapping
to the W3C standard RDF (Resource Description Framework [4]) in mind.
Thereby our main constraints were: a) The data model must allow to annotate (and
therefore address) all of its elements, in order not to limit expressivity. b) The data model
must allow giving things human-usable names. The success of wikis and their page naming
scheme shows the importance of naming. c) As we cannot expect users to work on one
modelling layer only, the data model has to allow meta-modelling. d) The CDS data model
should profit from existing technology, hence the CDS data model maps to RDF will be
integrated into the NEPOMUK4 social semantic desktop project. This will allow the user to
annotate, link and classify not only personal notes but also any desktop resource.

5.2 CDS data model

In CDS, the central object is the Item. Every Item has a Unique Resource Identifier (URI).
This allows to uniquely address any entity. Items are like the nodes of a graph. They can
have content, which is usually a short snippet of text. Statements are the arcs in such a
graph and—as they are subtypes of items—can also have content. Items and Statements
allow to represent node-and-arc diagrams, e.g. like concept maps. A Model contains a
number of Items. Items may occur in several Models. A NameItem is an Item, whose
content actually serves as its name, which means it has to be unique within each Model
where it is used. URIs are too inconvenient to be handled by the user. The shift from using
an Item with the content “X” to using a NameItem with the content (here: name) “X” can be
seen as a first step toward formalisation: The user is building his or her own vocabulary.
The next formalisation step is possible by assigning types to Items by referring to any
NameItem with the built-in relation hasType.

Figure 1: Complete CDS data model

4 http://nepomuk.semanticdesktop.org

Fig. 1 shows the CDS data model. It has a number of extensions to allow real-world usage.
We explain now each element in detail.
 A Model is simply a container to group Items. It is important to have this concept in
order to model different world views or simply different use cases. A Model is much like a
file or database. A Model also has a URI, to make it easier to re-use CDS Models in RDF
ModelSets, as defined by the SPARQL5 specification or Named Graphs [5].
 Content varies greatly in size and type. CDS must allow small content such as single
words, sentences or short notes up to full-blown formatted documents. CDS must also
allow modelling not only text but also other file types such as images or office file formats.
The need for this mix of text and binary content can be observed in emails or wiki pages,
which both can have binary attachments. CDS represents content as a bit sequence (not
visible in the figure) and a mime-type, to allow decoding the bit sequence. Mime-types are
an established means for web pages and emails to describe the semantics of a bit sequence.
 NameItems are particular kinds of items where the mime-type of the content is always
“text/plain”, which means pure text. The content of a NameItem can easily be entered a
human (possibly using an auto-completion mechanism). NameItems thus model a particular
kind of content: A human-usable name. The CDS data model demands that all NameItems
have exactly one Content (which is in fact the name) and that no two NameItems can have
the same content (names are unique). Both constraints do not hold for normal Items: They
can be empty or two items can have the same content. Note that NameItems represent really
only the name itself. A wiki page, e.g. can be modelled as two things: A NameItem to hold
the wiki page title and an Item to hold the wiki page content. A Statement connects the two
parts.
 To allow for collaborative usage, CDS assigns to each piece of Content an author,
denoted by a URI and a time stamp which records the change date of the content. This
collaboration model is similar to wikis.
 Comparing CDS with nodes and arcs, an arc is modelled as a Statement. Each Statement
links a source Item with a target Item. Additionally, each Statement can have a type. CDS
uses Relations as arc types. Relation is a special kind if NameItem. Each Relation has
always an inverse Relation, to make it easier to browse and query the knowledge base.
 Note that users can make Statements about Items, NameItems, Relations and other
Statements. This allows full meta-modelling, which we exploit when designing the CDS
ontology.

5.3 Mapping the CDS data model to RDF

CDS is implemented using the “semantic web content repository” (swecr)6. Swecr consists
of three core components: An RDF store, a binary store (BinStore) and a full text index.
The BinStore is much like a piece of WWW infrastructure, but running on the local
desktop. It maps URIs to binary streams and mime-types. Additionally, the BinStore
records author and creation date of the content.
 A CDS model is stored partially in BinStore (Content of Items) and partially in RDF
(Items, NameItems, Relations and Statements). Metadata of Content is also stored in RDF.
 An Item is modelled as an rdfs:Resource, using the URI present in the CDS data model
as the URI of the resource. As NameItems are expected to have rather short pieces of
content, we store the content of NameItems also within the RDF model. We use two
rdfs:Classes to model the types Item and NameItem. To represent Statements, we use the
reification mechanism of RDF.

5 http://www.w3.org/TR/rdf-sparql-query/
6 http://wiki.ontoworld.org/wiki/Swecr

As an example, “Claudia” wants to express the facts that “Dirk” works at “SAP” and that
“SAP” is located in “Karlsruhe”. In CDS, she could use NameItems to represent Dirk, SAP
and Karlsruhe, as they are unique concepts for here. Fig. 3 shows a CDS model
representing this example. The same model, encoded in RDF is shown in Fig. 4.

[Dirk] [works at] [SAP].
[SAP] [is located in] [Karlsruhe].
[works at] cds:hasInverse [employs].
[is located in] cds:hasInverse [is location of].

Fig. 3: A simple CDS user mode)

Fig. 4: A CDS model represented in RDF (N3 Syntax)

5.4 CDS ontology

Whereas the CDS data model allows modelling content snippets (Items) and arbitrary
relations between them, the CDS ontology defines a simple schema language to classify,
relate and describe relations. It is designed to allow for soft migration from unstructured to
structured knowledge. The user is free to create any Relation or Item types he needs. CDS
only demands from the user to classify all relations according to the CDS ontology. This is
not really a constraint however since unspecified relations can safely be made a sub-relation
of the top-level relation cds:related. The CDS ontology is a taxonomy of Relations, each
lower-level Relation implies the higher-level Relations, just like in RDF Schema.
 Every Item that has any kind of Relation to any other node is at least “cds:related”. If
one Item A is an alias of another Item B, then all Statements about A are considered to be
Statements about Item B. If one Item is a replacement for another one, then an occurrence of
A’s content is replaced at edit-time with B’s content, e.g. when editing text.
 CDS relations are based on four axes, which we consider to be the core dimensions for
information structuring:
 (1) cds:hasTarget and its inverse cds:hasSource model generic, directed linking. This
can be found in WWW hyperlinks, references in documents, or links in the file system. The
semantics of a link are pretty generic: A link refers to a target Item.
 (2) cds:hasAfter and its inverse cds:hasBefore model any kind of ordering relation. It
might be order in space, time or by other means, e.g. priority or rank. Sequences such as
arrays and lists are used in virtually any information system.

Define Items (in this case: NameItems):
 <dirk> rdf:type cds:NameItem .
 <dirk> cds:hasContent “Dirk”
 <sap> rdf:type cds:NameItem
 <sap> cds:hasContent “SAP”
 <ka> rdf:type cds:NameItem
 <ka> cds:hasContent “Karlsruhe”

Define Relations and their inverse Relations:
 <wa> rdf:type cds:Relation
 <wa> cds:hasContent “works at”
 <wa> cds:hasInverse <emp>
 <emp> rdf:type cds:Relation
 <emp> cds:hasContent “employs”

Make two Statements:
 <s1> rdf:type rdfs:Statement
 <s1> rdf:subject <dirk>
 <s1> rdf:property <wa>
 <s1> rdf:object <sap>
 <s2> rdf:type rdfs:Statement
 <s2> rdf:subject <sap>
 <s2> rdf:property <locIn>
 <s2> rdf:object <ka>

 <locIn> rdf:type cds:Relation
 <locIn> cds:hasContent “is located in”
 <locIn> cds:hasInverse <locOf>
 <locOf> rdf:type cds:Relation
 <locOf> cds:hasContent “is location of”

 (3) cds:hasDetail and its inverse cds:hasContext represent any kind of hierarchy and
nesting. Hierarchies are very common information structures present in documents,
organisational charts, file systems, and user interfaces. For both relations (2) and (3) the
transitive closure is calculated and used in search queries.
 (4) cds:hasAnnotation and its inverse cds:hasAnnotationMember models annotations
of Items. An annotation is typically a statement about an item—taking a meta perspective
In CDS, Web 2.0-style tagging is considered a special form of annotation. Classifying an
item with cds:hasType is a special case of tagging. Tagging has no formal semantics, but
types are inherited via the cds:hasSubType-Relation—which is in turn a special form of
cds:hasDetail.
 The complete CDS Relation ontology is depicted in Fig .5.

5.5 CDS Inference

CDS offers by its design three parallel ways to work with personal knowledge: (1) content
of Items, e. g. simple keyword search for item retrieval, using structural and formal
knowledge only to improve ranking, (2) Relation structure for retrieval by associative
browsing as well as for composing documents from existing items, and (3) semantics of
Items and Relations for reasoning.
 As an example for CDS inferencing, we extend the example given in Fig. 3 with two
more Statements that map Claudias Relation vocabulary to the CDS ontology:

[works at] cds:hasSuperType cds:hasContext.
[is located in] cds:hasSuperType cds:hasContext.

Now Claudia can pose the query “[Karlsruhe] cds:hasDetail ?” (or browse the NameItem
[Karlsruhe]). The CDS model returns “Dirk” and “SAP” since both are (transitive) details
of “Karlsruhe”. A query for “[Karlsruhe] cds:hasDetail ?x AND ?x cds:hasType [Person]”
would return only [Dirk]—if Claudia would also state that [Dirk] cds:hasType [Person].

5.6 Structured Text

We are currently defining a mime-type called STIF (“Structured Text Interchange
Format”)7 which is based on the former wiki interchange format (WIF) [6].
STIF is meant as a simple markup language (in fact a subset of XHTML) allowing to
represent only structural, but not visual features: headlines, list, tables, images and links are
allowed, but font style, font size and color are not.

7 http://wiki.ontoworld.org/wiki/STIF

Figure 5: The CDS ontology

 A transformation from a STIF-text into a set of smaller, CDS-related Items is planned.
The inverse direction will be used to assist the user in composing documents from a number
of Items. E.g. a hierarchy of items can be mapped to document hierarchy (headlines, nested
lists). Both processes ease the creation of structured content, as one can start to write
structured documents, e.g. while setting in a meeting and later transforming the text into a
more fine granular CDS model.

6. Conclusions and Summary

6.1 Achievements and next steps:

A CDS API and two authoring tools (a graphical desktop tool and a simple web editor) are
currently implemented via swecr8, using RDF. Existing RDF data can be browsed the CDS
way, provided the RDF properties are mapped to CDS core relations. Next steps will
include improvements in the mapping of terms to Items, integration into existing semantic
desktop infrastructure, and implementation and evaluation of end-user tools.

6.2 Summary:

We have observed which structures people use in different tools and use cases and found
that a small set of relations is very common across many kinds of knowledge artefacts. We
believe, that the set of Conceptual Data Structures (CDS) presented in this paper can

(1) act as a formalism for recording, managing, and sharing personal knowledge,
(2) bridge the wide gap between informal or unstructured information and fully formal

semantic models in Personal Knowledge Management (PKM),
(3) serve as the least common denominator for knowledge exchange among humans

and among different tools, and
(4) encode vague structures (e.g. “this is nested within that, but I can’t say how”).
(5) CDS can act as a guideline for PKM tools: Each tool should be able to create,

represent and manipulate at least the structural elements defined in CDS.

References
[1] Nonaka, I. & Takeuchi, H. The Knowledge-Creating Company: How Japanese Companies Create the
Dynamics of Innovation. Oxford University Press, 1995
[2] Max Völkel, Heiko Haller. Conceptual Data Structures (CDS)—Towards an Ontology for Semi-Formal
Articulation of Personal Knowledge. In Proc. of the ICCS 2006. Aalborg University – Denmark, July 2006.
[3] David Karger; Karun Bakshi; David Huynh; Dennis Quan; Vineet Sinha: Haystack – A General Purpose
Information Management Tool for End Users of Semistructured Data. CIDR Conference Paper, 2005.
s.a. http://haystack.lcs.mit.edu/
[4] Resource Description Framework (RDF): http://www.w3.org/RDF/
[5] Carroll, J.J.; Bizer, C.; Hayes, P. & Stickler, P. Named Graphs, Provenance and Trust. HP, 2004.
[6] Max Völkel, Eyal Oren. Towards a Wiki Interchange Format (WIF). Proceedings of the First Workshop
on Semantic Wikis—From Wiki To Semantics. 2006.

8 http://swecr.semweb4j.org

