
A Semantic Web Content Model and Repository1

Max Völkel
(FZI Forschungszentrum Informatik Karlsruhe, Germany

voelkel@fzi.de)

Abstract: There is currently no model that is capable of representing the content
of web resources together with their semantic web meta-data. This paper presents re-
quirements for semantic content management, a unified human-browsable and human-
editable semantic web content model (SWCM), and its implementation swecr.

Key Words: meta-data, semantic web, content management, RDF

Category: H.3.7, H.5.4

1 Unifying Web and Semantic Web

This paper presents a content management meta-model combining the usability
of the web with the expressivity and flexibility of the semantic web.

Although the semantic web is typically characterised as an extension of the
existing web [1], there is no formal model describing the resulting mix of content
and meta-data. The web is targeted for direct human usage e. g. by browsing
web pages, but the semantic web is not. Therefore a simple merge of the two
models does not result yet in a very usable model for content management.

Requirements for content management are discussed and presented in Sec. 2.
The resulting model is called the Semantic Web Content Model (SWCM) and
described in Sec. 4. Sec. 5 shows the architecture and implementation of swecr
– a semantic web content repository.

1.1 The Web

REST [2] is the architectural style used for most parts of the world wide web.
REST describes a set of addressable resources which are manipulated by sending
self-describing representations to them (c. f. Fig. 1). One of the REST constraints
is “hypertext is the engine of application state”, which means each representation
should contain the URIs of related resources. There is no defined way to model
typed relations between resources, as RDF allows.

In the WWW resources are addressed by URIs and representations are char-
acter streams plus metadata describing the encoding, type of content and other
1 Part of this work has been funded by the European Commission in the context of

the IST NEPOMUK IP - The Social Semantic Desktop, FP6-027705. Part of this
work has been done in WAVES – Wissensaustausch bei der verteilten Entwicklung
von Software, funded by BMBF, Germany. Special thanks to Tim Romberg, Heiko
Haller and Daniel Clemente for fruitful discussions.

© 2007 Max Völkel, FZI
1

The Web

Content

RepresentationURI

ChangeDate

MimeType

Encoding

meta-
data

Figure 1: The Web Model: REST

© 2007 Max Völkel, FZI
2

The Semantic Web

Resource

URI

Statement

BlankNode

Literal

Node

PlainLiteral Datatyped
Literal

subject
predicate

object

Language
Tagged
LiteraldatatypeURI

NamedGraph

Figure 2: The Semantic Web Model: RDF

metadata such as the last modification date. In practice, there are many more
meta-data fields e. g. to control caching or compression of content.

1.2 The Semantic Web

The Resource Description Framework (RDF) [3] is the basic representation for-
mat for knowledge on the semantic web. It was originally defined as a format
to describe meta-data about resources on the web. Fig. 2 shows the RDF data
model together with the notion of Named Graphs [4] as used in SPARQL [5]. As
such it was never intended to contain the actual content of web resources.

Although RDF can conceptually contain binary data, stored in an xsd:base-

64Binary data-typed literal, there is no defined way to relate URIs with content.
Current RDF triple stores are not meant to store larger binary chunks either.
Programming libraries for RDF lack ways to describe, access or change the con-
tent of web resources themselves.

A second problem with RDF is its lack of authoring tools. These can be
divided into two classes: (1) generic: the user can change the schema at runtime,
and (2) fixed-schema: the schema is pre-defined. An example of a fixed-schema
tool is an address book editor which outputs its data in a fixed RDF format.

Authoring generic RDF without a pre-defined schema is very flexible, but has
usability issues: e. g. each RDF resource can have none, one or multiple labels.
It is an application level task to decide how to handle this. RDF can be called
an assembly language for data, that can represent almost everything but lacks
higher-order features to make it efficient for direct interaction with humans.

2 Requirements for a Semantic Content Management

Granularity (1). A Semantic Web Content Model must allow to describe web
content.

The web began with small personal home pages and grew up with huge search
and shopping portals. Since a few years there is a tendency for smaller con-
tent granularity, especially on collaborative websites. The term micro-content
emerged for this set of addressable content consisting of tags (single terms),
comments (often not more than a single paragraph), blog posts (often about
half a page), images (including meta-data and a title) or video snippets. For
most of these micro-content items, the author and the time of creation or
last change are automatically logged and used for searching and browsing.

Expressivity (2). The model should be able to offer the same flexibility and
expressivity as RDF to describe and relate content resources. Existing popu-
lar schema-free authoring tools such as mind-mapping or outlining tools lack
the expressivity and data integration abilities of RDF, e. g. in many mind-
mapping tools the user may in fact edit only strict trees. In short, existing
(micro-)content management applications have low expressivity.

Compatibility (3). Furthermore, A clear path how to use the SWCM to-
gether with existing frameworks is desirable. Especially the re-use of existing
background-knowledge expressed in RDF should be possible together with
SWCM.

Naming (4). Names allow a user to fetch a unit of information in O(1). This
is similar to know e. g. the URL of a certain web page or the file name and
path of an office file. Human-usable naming is probably an overlooked area of
content management. E. g. wikis allow users to use easy-to-remember names
to quickly navigate or link to known pages. The semantic web is fundamen-
tally built on URIs, which are unique names for resources. Unfortunately,
they are hard to read and use for humans.

Search (5). Any content model should allow to retrieve content conveniently.
Queries are usually convenient ways to retrieve a number of items fulfill-
ing certain criteria. A SWCM needs also the ability to query the content,
preferably by building on existing query languages.

Renderable representations (6). The model should be usable by end-users,
hence some requirements are imposed for meta-data structures: All meta-
data items should have a meaningful human-readable representation.

Mandatory inverse relations (7). In order to allow browsing semantic links
in a knowledge model, links must be traversable in both directions. Therefore,

it is desirable that link types have labels for both directions, e. g. “works
for” and “employs”. Note: In OWL, inverse relations are allowed but not
mandatory

Freedom of formalisation (8). The user needs a way to express content in an
informal way, e. g. as plain text, formatted text or box-and-arrow diagrams.
Then the user should be able to migrate the knowledge into more formal
structures, if desired (c. f. [6]).

Access rights (9). In any system used by multiple persons, access rights soon
become a necessity. Fine grained access rights management can become very
complex. If there are too many resources or rights to manage, the system
becomes unusable.

Versioning (10). A model supporting versioning can be used better for collab-
orative settings, because users do not have to be afraid of applying changes.
Changes not accepted by other community members can be rolled back.

3 Related Work

A number of related content models exist. This section describes them briefly
and evaluates them with respect to the requirements.

JCR [7] defines the Java Content Repository API (JCR), which has quickly
gained much industry attention. To date, there are at least four independent
implementations of this standard . JCR handles granularity well, even a mix of
large binaries and small single-term words has reasonable performance (1). The
expressivity of JCR is also rather high, JCR has a concept of node typing and
allows to add relations between nodes (2). However, JCR allows only XPath-style
[8] queries and does not allow for graph-like queries (as they are supported by
e. g. SPARQL), so (3) is not met. Requirements (4), (6), (7) and (8) are not met
at all. (5) is met rather well, as JCR allows to use the familiar query languages
SQL and XPath. (9) and (10) are well addressed.

Subversion [9] is an open-source versioning system (10) with access rights
(9) and a number of interesting properties. It can handle small text files or larger
binaries, but single terms are not in the focus. Therefore (1) is only partly met.
Subversion allows to attach key-value pairs to resources, but no relations to other
resources, so (2) also only partly met. Subversion repositories can be browsed (6)
as trees and have meaningful names (4). There are even some best-practices for
naming resources in a Subversion repository2. Subversion offers no search (5),
and does not address (3), (7) and (8).

2 http://svnbook.red-bean.com/en/1.0/ch05s04.html#svn-ch-5-sect-6.1

© 2007 Max Völkel, FZI
3

SWCM

Item

Model

Statement

Relation

NameItem

sou
rce

tar
ge

t

inverse

0..1

URI
0..n

author

type

0..n type
Content

Representation

ChangeDate

MimeType

Encoding

Figure 3: Semantic Web Content Model

4 A Semantic Web Content Model (SWCM)

A Semantic Web content model (SWCM, c. f. Fig. 3) consist of a set of items.
Item is a central concept which bridges the RDF and the content world as it is
both addressable via a URI and can refer to web content. All other elements in
SWCM are special kinds of items. Therefore all SWCM entities are addressable
and can refer to content of all sizes (Req. 1).

A NameItem is a sub-type of Item. It has a content snippet with the mime-
type “text/plain”. NameItems represent human-readable and -write-able names.
No two NameItems may have the same content within a single SWCM.

A Relation is a sub-type of NameItem. It has always exactly one inverse
relation defined. This makes the model much easier to browse and visualise
(Req. 7). E. g. in most semantic GUIs incoming links are rendered different from
outgoing links. Therefore it makes a difference for browsing whether a user stated
(“FZI”“employs”“Max”) or (“Max”“works for”“FZI”). For this user, this is often
an artificial distinction.

A Statement is also modelled as a sub-type of Item. This makes it addressable
and allows a user to attach content to it. A statement represents a relation from
one item (the source) to another item (the target) and always has a relation
type. In other words, a statement is like a typed link (Req. 2). Different from
RDF, SWCM statements can be addressed themselves.

SWCM has at least the same expressivity as RDF. Each RDF statement
(s,p,o) can be represented as two items (s and o) and a relation (p) with an
inverse (-p). However, SWCM has some features, that RDF has not: (1) All
SWCM content is addressable – this is not true for RDF literals. (2) SWCM
statements are addressable, too – RDF has only a rather unclear concept of
reification. The similarity between SWCM and RDF allows to convert RDF to
SWCM (creating new URIs for literals and lifting them to items).

5 A Semantic Web Content Repository

This section describes the architecture of swecr, a semantic web content reposi-
tory (swecr) available under BSD license from http://swecr.org. Swecr imple-
ments the SWCM.

5.1 Architecture

Swecr is implemented in two layers: The core layer models the state and the
repository layer offers an item-centric view on the state.

The core layer consists of a simple binary store (BinStore), an RDF Named
Graph repository and a text index.

The BinStore allows to access content in a stream and random access fashion.
The BinStore interface also takes care of concurrency and allows either multiple
reads or single writes. Note that many existing binary storage APIs offer no
random access which makes it impossible to use such store for implementing
projects such as Semantic File Systems [10].

The RDF repository is modelled as an RDF2Go ModelSet. RDF2Go is an
abstraction layer over RDF triple- and quad stores which relives the programmer
from choosing a single RDF store for all times. Currently OpenRDF is used as
the underlying implementation.

In order to allow queries over the binary content and to speed up queries
on RDF literals, Apache Lucene3 is used as a full text index. The index stores
inverse mappings for (item URI, content) and (URI, property URI, RDF literal
content).

For indexing binary content, all binary content is indexed after it has been
written to the BinStore. In a similar fashion all RDF literals are indexed after
they have been written. The proxy pattern is used here to separate the API from
the indexing. Removed resources have to be reflected in the index as well.

SPARQL queries should allow queries which access both the RDF and the
fulltext index. Similar systems have been developed for Jena (LARQ 4) and
Sesame (LuceneSAIL 5) already. The general idea is to split the query in two
parts and execute them individually: One query part is delegated to the RDF
store, the other part is delegated to the full-text index. Then a join is performed
by the item URIs. Depending on the result set size, other join strategies should
be favoured, i. e. first performing the full-text query and then binding the item
URI in the RDF query to the resulting URIs. We are currently implementing
this on top of RDF2Go to be independent of the triple store. Note that neither
LARQ nor LuceneSAIL currently provide any API for handling binary content.
3 http://lucene.apache.org/
4 http://seaborne.blogspot.com/2006/11/larq-lucene-arq.html
5 http://gnowsis.opendfki.de/wiki/LuceneSail

The core layer has no other obligations than starting, stopping and running
the three core components: RDF store, text index and BinStore.

The repository layer has no persistent state on its own, instead all updates
and queries are delegated to the core layer. This simplifies debugging and will
make sharing of state easier.

The repository layer implements 1:1 the SWCM as outlined in Sec. 4. It allows
to create, delete and manipulate Items, NameItems, Relations and Statements.
Additionally, queries on models are provided.

The repository, however, maintains the runtime state of items. Each item can
be locked. After locking, the item cannot be edited by other users. Locks time
out automatically if they are now renewed by the requesting application. The
requesting application may read who is currently editing a resources to be able
to initiate communication processes. Such communication is outside the scope
of swecr.

5.2 Implementation

This section describes how SWCM structures are stored in RDF. Two RDF
models are used for each SWCM, one for the actual data as modelled explicitly
by the user (user model) and one for the resulting plain RDF statements that
can be used for queries and inferencing (index model).

An Item with URI x is simply stored as
<x> a swcm:Item.

The optional content of the item is stored in the BinStore. A NameItem with
URI x and the content (name) “My Thesis” is represented in RDF as

<x> a swcm:NameItem; swcm:hasContent ‘‘My Thesis’’.

That is, the content of NameItems is currently stored in RDF. In the future, it
might instead be stored in the BinStore - this matters only for performance, ease
of debugging and the implementation of the query engine. A Relation p (e. g.
“works for”) with its inverse q (e. g. “employs”) is represented as

<p> a swcm:Relation; swcm:hasContent "works for"; swcm:hasInverse <q>.

<q> a swcm:Relation; swcm:hasContent "employs"; swcm:hasInverse <p>.

A Statement s from a to b with the relation p is represented as
<s> a swcm:Statement;

swcm:hasSource <a>; swcm:hasTarget ; swcm:hasRelation <p> .

For this statement, however, some data is written also to the RDF index model:
<a> <p> . and <p-inverse> <a>.

This means that we currently materialise the inverse triples into the index model.
In the future, a rule engine or reasoner might be used instead.

6 Summary

This paper presented the Semantic Web Content Model (SWCM) for content
management. The model was obtained by combining the features of the expres-
sive model of the semantic web (RDF) with the human-targeted model of the
web (REST). The resulting content model has been refined in a number of ways
in order to fulfill the requirements for content management.

Although the resulting model has the same expressivity as RDF, the SWCM
is targeted for browsing and authoring by humans. This comes at the cost of
additional constraints, e. g. all content has a URI, each relation has an inverse,
there can not be two relations having the same “label”, etc. The SWCM and its
implementation swecr are used in the NEPOMUK-project6 to realize two end-
user modeling tools: iMapping [11] and a Conceptual Data Structures (CDS) [6]
authoring tool.

The paper also presented existing approaches and its shortcomings, and an
implementation of the SWCM.

Future work includes: Implementing SPARQL queries combining text index
and triple store, access control, versioning, and carry out performance tests.

References

1. Decker, S., et al.: The semantic web: The roles of XML and RDF. IEEE Internet
Computing 4 (2000) 63–74

2. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, University of California, Irvine (2000)

3. Hayes, P.: RDF semantics. Recommendation, W3C (2004)
4. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and

trust. Technical report, HP (2004)
5. Prud’Hommeaux, E., Seaborne, A.: Sparql. W3C Candidate Recommendation

(2007)
6. Völkel, M., Haller, H.: Conceptual data structures (cds) – towards an ontology for

semi-formal articulation of personal knowledge. In: Proc. of the 14th International
Conference on Conceptual Structures 2006, Aalborg University - Denmark (2006)

7. Nuescheler, D.: Content repository api for java technology specification. Technical
Report Java Specification Request 170, Day Management AG, Switzerland (2005)

8. Clark, J., DeRose, S.: Xml path language (xpath) version 1.0. Technical report,
W3C (1999)

9. Pilato, C.M., Collins-Sussman, B., Fitzpatrick, B.W.: Version Control with Sub-
version. O’Reilly Media, Inc (2004)

10. Bloehdorn, S., Görlitz, O., Schenk, S., Völkel, M.: Tagfs - tag semantics for hierar-
chical file systems. In: Proceedings of the 6th International Conference on Knowl-
edge Management (I-KNOW 06), Graz, Austria, September 6-8, 2006. (2006)

11. Haller, H., Völkel, M., Kugel, F.: imapping wikis - towards a graphical environment
for semantic knowledge management. In Schaffert, S., Völkel, M., Decker, S., eds.:
Proceedings of the First Workshop on Semantic Wikis – From Wiki To Semantics.
(2006)

6 http://nepomuk.semanticdesktop.org

