
Proceedings of the
First Workshop on Semantic Wikis

– From Wiki To Semantics

edited by Max Völkel

May 15, 2006

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Preface

Dear Reader,
The community of Semantic Wiki researchers has probably first met at the dinner

table of the Semantic Desktop Workshop, ISWC 2005 in Galway, Ireland. It was that
very night, were the idea of the ”First Workshop on Semantic Wikis” and a mailing list
were born. Since then, much has happened.

The Topic of Semantic Wikis has evolved from a an obscure side-topic to one of interest
for a broad community.

Our mailing list1 has grown from twenty to over hundred subscribers. As the diversity
of papers at this workshop shows, the field of Semantic Wiki research is quite diverse. We
see papers on semantic wiki engines, a multitude of ways to combine wiki and semantic
web ideas, and application of semantic wikis to bioscience, mathematics, e-learning, and
multimedia.

Semantic Wikis are currently explored from two sides: Wikis augmented with Seman-
tic Web technology and Semantic Web applications being wiki-fied. In essence, wikis
are portals with an editing component. Semantic Wikis can close the ”annotation bot-
tleneck” of the Semantic Web – currently, we have many techniques and tools, but few
data to apply them. We will change that.

We wish to thank all authors that spend their nights contributing to this topic and
thereby made the workshop possible. The high number of good submissions made the
work for the programm committee members even more difficult – thank you all for your
work. Many thanks also to the ESWC organisation team, which decided in the last
minute to grant us a full-day workshop. Let’s continue to bring the wiki-spirit to the
Semantic Web and enjoy reading the proceedings.

Karlsruhe, May 2006
Max Völkel, Sebastian Schaffert and Stefan Decker

1swikig@aifb.uni-karlsruhe.de

iii

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Contents

Preface iii

Graphingwiki - a Semantic Wiki extension for visualising and inferring protocol
dependency
Juhani Eronen and Juha Rning 1

Reusing Ontological Background Knowledge in Semantic Wikis
Denny Vrandečić and Markus Krötzsch 16

Kaukolu: Hub of the Semantic Corporate Intranet
Malte Kiesel 31

Creating and using Semantic Web information with Makna
Karsten Dello, Elena Paslaru Bontas Simperl, and Robert Tolksdorf 43

Annotation and Navigation in Semantic Wikis
Eyal Oren, Renaud Delbru, Knud Möller, Max Völkel, and Siegfried Handschuh 58

SweetWiki: Semantic WEb Enabled Technologies in Wiki
Michel Buffa, Gaël Crova, Fabien Gandon, Claire Lecompte, and Jeremy Passeron 74

iMapping Wikis – Towards a Graphical Environment for Semantic Knowledge
Management
Heiko Haller, Felix Kugel, and Max Völkel 89

The ABCDE Format Enabling Semantic Conference Proceedings
Anita de Waard and Gerard Tel 97

Learning with Semantic Wikis
Sebastian Schaffert, Diana Bischof, Tobias Bürger, Andreas Gruber, Wolf Hilzen-
sauer, and Sandra Schaffert 109

Harvesting Wiki Consensus - Using Wikipedia Entries as Ontology Elements
Martin Hepp, Daniel Bachlechner, Katharina Siorpaes 124

From Wikipedia to Semantic Relationships: a Semi-automated Annotation Ap-
proach
Maria Ruiz-Casado, Enrique Alfonseca, and Pablo Castells 139

iv

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Extracting Semantics Relationships between Wikipedia Categories
Sergey Chernov, Tereza Iofciu, Wolfgang Nejdl, and Xuan Zhou 153

Wiki and Semantics
Jean Rohmer 164

A Wiki as an Extensible RDF Presentation Engine
Axel Rauschmayer and Walter Christian Kammergruber 173

A Semantic Wiki for Mathematical Knowledge Management
Christoph Lange and Michael Kohlhase 188

Towards a Semantic Wiki-Based Japanese Biodictionary
Hendry Muljadi, Hideaki Takeda, Shoko Kawamoto, Satoshi Kobayashi, and Asao
Fujiyama 202

Ylvi - Multimedia-izing the Semantic Wiki
Niko Popitsch, Bernhard Schandl, Arash Amiri, Stefan Leitich, and Wolfgang
Jochum 207

Automatic Deployment of Semantic Wikis: a Prototype
Angelo Di Iorio, Marco Fabbri, Valentina Presutti, and Fabio Vitali 212

Bringing the Wiki-Way to the Semantic Web with Rhizome
Adam Souzis 222

Towards a Wiki Interchange Format (WIF)
Max Völkel and Eyal Oren 230

A Collaborative Programming Environment for Web Interoperability
Adam Cheyer and Joshua Levy 245

v

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Program

09:00 - 10:30 Session 1
09:00 - 09:15 Opening Ceremony

Sebastian Schaffert and Max Völkel
09:15 - 09:45 Graphingwiki - a Semantic Wiki extension for visualising and

inferring protocol dependency
Juhani Eronen and Juha Rning

09:45 - 10:15 Reusing Ontological Background Knowledge in Semantic Wikis
Denny Vrandečić and Markus Krötzsch

10:15 - 10:30 Kaukolu: Hub of the Semantic Corporate Intranet
Malte Kiesel

10:30 - 11:00 Coffee Break

11:00 - 12:30 Session 2: Lightning Panels, 5 minutes per paper
11:00 - 11:15 Semantic Wiki Engines

Creating and using Semantic Web information with Makna
Karsten Dello, Elena Paslaru Bontas Simperl, and Robert
Tolksdorf
Annotation and Navigation in Semantic Wikis
Eyal Oren, Renaud Delbru, Knud Möller, Max Völkel, and
Siegfried Handschuh
SweetWiki: Semantic WEb Enabled Technologies in Wiki
Michel Buffa, Gaël Crova, Fabien Gandon, Claire Lecompte,
and Jeremy Passeron
–discussion–

11:20 - 11:35 Future of Semantic Wikis
iMapping Wikis – Towards a Graphical Environment for Se-
mantic Knowledge Management
Heiko Haller, Felix Kugel, and Max Völkel
The ABCDE Format Enabling Semantic Conference Proceed-
ings
Anita de Waard and Gerard Tel
Learning with Semantic Wikis
Sebastian Schaffert, Diana Bischof, Tobias Bürger, Andreas
Gruber, Wolf Hilzensauer, and Sandra Schaffert
–discussion–

vi

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

voelkel
Note
Röning, not Rning

11:40 - 11:55 From Wikipedia to Ontology
Harvesting Wiki Consensus - Using Wikipedia Entries as On-
tology Elements
Martin Hepp, Daniel Bachlechner, Katharina Siorpaes
From Wikipedia to Semantic Relationships: a Semi-automated
Annotation Approach
Maria Ruiz-Casado, Enrique Alfonseca, and Pablo Castells
Extracting Semantics Relationships between Wikipedia Cate-
gories
Sergey Chernov, Tereza Iofciu, Wolfgang Nejdl, and Xuan
Zhou
–discussion–

12:00 -12:15 From Semantics to Wikis
Wiki and Semantics: Panacea, Contradiction in Terms, Pres-
sure for Innovation?
Jean Rohmer
A Wiki as an Extensible RDF Presentation Engine
Axel Rauschmayer and Walter Christian Kammergruber
–discussion–

12:15 - 12:30 Wrap up

12:30 - 14:00 Lunch

14:00 - 15:30 Session 3: Demo/Poster Session
A Semantic Wiki for Mathematical Knowledge Management
Christoph Lange and Michael Kohlhase
Towards a Semantic Wiki-Based Japanese Biodictionary
Hendry Muljadi, Hideaki Takeda, Shoko Kawamoto, Satoshi
Kobayashi, and Asao Fujiyama
Ylvi - Multimedia-izing the Semantic Wiki
Niko Popitsch, Bernhard Schandl, Arash Amiri, Stefan Leitich,
and Wolfgang Jochum
Automatic Deployment of Semantic Wikis: a Prototype
Angelo Di Iorio, Marco Fabbri, Valentina Presutti, and Fabio
Vitali
Bringing the Wiki-Way to the Semantic Web with Rhizome
Adam Souzis
Towards a Wiki Interchange Format (WIF)
Max Völkel and Eyal Oren
A Collaborative Programming Environment for Web Interop-
erability
Adam Cheyer and Joshua Levy

. . . and other demos/posters

15:30 - 16:00 Coffee Break

vii

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

16:00 - 17:30 Session 4: Interactive
16:00 - 17:00 Teamwork
17:00 - 17:45 Teams present their results
17:45 - 18:00 Conclusion and Outlook

20:00 ESWC Demo Session

20:45 SemWiki 2006 Social Event

Organisation

• Stefan Decker

• Sebastian Schaffert

• Max Völkel

viii

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Graphingwiki - a Semantic Wiki extension for
visualising and inferring protocol dependency

Juhani Eronen and Juha Röning

Oulu University Secure Programming Group
Computer Engineering Laboratory, Linnanmaa BOX 4500

FIN-90014 University of Oulu, Finland
ouspg@ee.oulu.fi

Abstract. This paper introduces the Graphingwiki extension to MoinMoin Wiki.
Graphingwiki enables the deepened analysis of the Wiki databy augmenting it
with semantic data in a simple, practical and easy-to-use manner. Visualisation
tools are used to clarify the resulting body of knowledge so that only the data es-
sential for an usage scenario is displayed. Logic inferencerules can be applied to
the data to perform automated reasoning based on the data. Perceiving dependen-
cies among network protocols presents an example use case ofthe framework.
The use case was applied in practice in mapping effects of software vulnerabili-
ties on critical infrastructures.

Keywords: semantic wiki, protocol dependency, visualisation, inference

1 Introduction

In recent years, Wikis and the semantic web have become the state of the art methods
for the management of information. Wikis have proven to be aneffective means for the
collective gathering and editing of bodies of data ranging from encyclopaedia to bug
tracking and journals. Semantic web is envisioned as a universal medium for data ex-
change and as a tool to manage the interconnection of information, enabling automated
analysis of data. [5] [18] [24] [1]

Both of the technologies have strong selling points: Wikis enable collaborative,
open, evolutionary, and easy modification of data, and the semantic web employs Re-
source Description Framework (RDF), a powerful yet relatively simple language for
representing information about World Wide Web (WWW) resources. RDF consists of
subject-predicate-object triples that are used to make statements about resources [12].
An RDF resource can basically be anything that has a Uniform Resource Identifier
(URI), so it can be used to refer to any web resource. The triples describe either rela-
tionships between two resources, the subject and the object, or an aspect of the subject,
the value of which is specified by the object. The predicate isa resource that the rela-
tionship or aspect describes. Integrating wikis with RDF could bestow it with the editing
abilities necessary for efficient knowledge management.

Combining the approaches and techniques of Wikis and semantic web has met little
success. The little support traditional Wikis offer for semantic data usually culminates

1

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

in page categories and different kinds of comment tags. Semantic web tools are often
single-user oriented and their operation frequently requires expert skills, which makes
knowledge engineering challenging for domain experts. [7][25] [18]

Wikis have the strength that they focus on the structure of the data instead of its
presentation. Wiki users are accustomed to creating, linking and tagging content, which
represent the bare minimum requirements for taking advantage of semantics. Adding
semantic features to Wikis offers a smooth transition for exploiting different layers of
knowledge. [23]

This paper introduces Graphingwiki, a Wiki extension that aims to enable knowl-
edge engineering in Wikis by sidestepping the complexity ofsemantic technologies.
The bare minimum functionality for semantic capabilities in a Wiki includes the imple-
mentation of a small but functional subset of RDF. This also follows the Wiki way of
doing the simplest thing that could possibly work [6]. Usersintroduce semantic data into
the Wiki by simply tagging pages and page links with words or phrases that sound suit-
able to them. RDF resources are represented on a Wiki page as tagged links and tagged
page data. Together the page tags and the link tags create theRDF statements of the
forms<page> <tag> <linked page>,<page> <tag> <URI resource>
and<page> <tag> <tag value>.

The tags of represent a flat namespace and do not have a hierarchy of any kind. In a
way, this method of adding semantic data resembles folksonomies such as del.icio.us1.
Tagging is simple and unrestrained as it aims for easy diffusion in the user base. Ex-
isting mechanisms, such as different kinds of linking, category pages and macros, are
utilised as much as possible. Users may freely select the tags they use, which thus sac-
rifices consistency for practicality. This approach can prove more useful than forcing
any predefined tagging schema [17] [22].

A Wiki functions as its own ontology, formed by all the tags inthe Wiki’s pages
[2]. Each descriptive tag is assigned a page of its own so thatterms can be defined and
refined in the Wiki itself. The resulting ontologies are expressive to humans but lack the
complexity and formality required for elaborate machine-processable constraints on the
page data. This does not present a hindrance for knowledge management — in fact, the
most successful knowledge models tend to be very simple and specific [18].

Interactive visualisation is proposed as a method for understanding the relations of
information on the Wiki pages. Visualisations can be used tonavigate the Wiki, and they
include facilities for filtering out non-relevant data. This enables the quick derivation of
a general view on any desired topic or entity.

Furthermore, Graphingwiki includes some logic reasoning capabilities for refining
specific knowledge from the Wiki tags. Wiki pages can includerules that lead to new
conclusions about specific tags, and the resulting data can be queried for sets of pages
and tags that fulfil the premises of the query. This presents afine-grained method for
discovering relations amongst the wealth of data.

The paper presents the methods in the context of a practical use case, fathoming in-
terdependencies in communication protocols. It is also argued that a similar knowledge
management approach would also be effective for other domain-specific tasks where an

1 http://del.icio.us/

2

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

universal topical scope and some of the other stumbling blocks of semantic technologies
are not an issue [18] [21].

The paper is structured as follows. In section 2, additions to traditional Wiki features
are presented, which beget methods for gathering, visualising and reasoning on the data
for the example case. Section 3 presents some results of an initial analysis of the use of
Graphingwiki. Directions for future work are laid out in section 4. Finally, the work is
summarised in section 5.

2 Methodology

The main methods used in Graphingwiki include additions to the MoinMoin2 Wiki
markup and plug-in tools that save the semantic data for later processing, visualise the
semantic data and make logical reasoning based on it.

2.1 Implementation issues

MoinMoin was selected as the starting point for semantic Wiki development based on
the criteria that it is open source, implemented in the Python3 programming language,
is mature and extendable, and uses a file database. Graphingwiki is implemented as
a set of pluginactions to manipulate the page data,macros, andformatters to render
the semantic data to the desired viewable or processable forms. The design strives to
maximise backwards-compatibility and the use of existing MoinMoin features.

The semantic data in each Wiki page is stored into a file of its own, in a symmetrical
manner with the page data storage in the MoinMoin Wiki. A general-purpose graph li-
brary was created for this purpose. Semantic data is interpreted with the help of existing
and augmented Wiki markup, and serialised in the defined graph format. As the markup
allows for incoming links links that are not shown on the wikipage itself, a global file
database of page linkage was also implemented.

Graphingwiki uses the Python bindings of the Graphviz4 suite of layout tools to
visualise the semantic relations of a Wiki page as graphs. The inference module is a
simple unifier-based design in the style of many Prolog implementations.

2.2 Wiki markup additions

The chosen markup additions resemble closely those utilised by the semantic Wikipedia
-project [24] and semantic Mediawiki [14]. Similar semantic additions developed for
MoinMoin 5 were investigated but deemed to include only a portion of thedesired
features.

The goal of the markup additions is not to implement the wholeof the RDF notation,
but to present the user a simple and intuitive way to make statements about a Wiki page.

2 http://www.moinmoin.wikiwikiweb.de
3 http://www.python.org
4 http://www.graphviz.org
5 http://theendmusic.org/programming/MetaDataPlugin

3

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Statements can only describe the containing Wiki page in relation to page tag values,
Wiki pages and URI resources. Semantic data is marked up within page content and
rendered in a meaningful manner when the page is viewed.

There are two kinds of statements users can make about a Wiki page: MetaData
statements and augmented link statements. MetaData statements are used to realise se-
mantic page tags. They are implemented with a macro and therefore follow the Moin-
Moin macro syntax of the form[[MacroName(arguments)]]. The arguments of the
MetaData macro consist of tag-value pairs with an optional third argument that omits
the macro from page rendering. For example, the statement
[[MetaData(SpecialPower, x-ray vision)]]

on a superhero Wiki page denotes that he or she has the extraordinary ability to conduct
airport security checks without external hardware, among other things.

Respectively, augmented link statements are used to implement semantic link tags.
They extend the MoinMoin named link syntax forms
[:OtherPage:Wiki page] and
[http://example.com URI resource]

that create links with descriptive labels (see Figure 1). Augmented link syntax adds a
link tag to this markup, resulting in links of the forms

Fig. 1. Rendering of normal MoinMoin links.

[:OtherPage:linktag: page] and
[http://example.com linktag: URI resource].

The special keyword “From” in the end of the type string denotes that the link is an
incoming link, i.e. the referenced page links to the currentpage instead of the current
page linking to it. For example, the statements
[:OtherPage:linktagFrom: page] and
[http://example.com linktagFrom: URI resource]

indicate that the current page is referenced by the Wiki pageor the WWW page, re-
spectively.

The statement[:DrX:Nemesis: DrX] on the superhero Wiki page tells that the
nemesis of our hero is Dr. X, described in the same Wiki. Respectively,
[http://example.com FanClub: http://example.com]

states that the hero’s fan club has its web page at the URI http://example.com. Repeating
the link in the descriptive string is not required, the examples do so for reasons of clarity
only. Figure 2 illustrates the rendering of these statements.

The notation defaults to the namespace designated by the Wiki. To avoid collisions
with regular Wiki pages, the pages describing the page tags and the link tags are pre-

4

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 2. Rendering of semantic statements.

fixed with ’Property’. Thus, in the examples of the previous paragraphs, ’PropertySpe-
cialPower’ and ’PropertyFanClub’ are pages in the same Wiki.

By editing the descriptions and semantic data on the Wiki pages describing the page
tags and the link tags, the community creates a contract on the formal meaning of a do-
main - effectively an ontology. This lets the users freely edit the ontology in a very
Wiki-like fashion, which reduces the entry barrier and encourages vocabulary growth
and expressiveness. For example, users of the superhero Wiki can elaborate on the con-
cept of special powers (i.e. the content of the ’PropertySpecialPower’ page), adding
further information, declaring exceptions, and so forth. The availability of discussions
on the subject, along with relevant links and multimedia, will help in understanding the
concept. [11]

Graphingwiki is not planned to support any deeper semantic meaning to ontology
entries. RDF schema or datatypes are not supported, nor are pages checked for con-
sistency with any formalism. However, template pages can beused to create implicit
meta-ontologies similarly as in Wikitology [8]. For example, a ’SuperheroTemplate’
could include statements common for all superheroes, so that when a page for a super-
hero is created using that template, the author is reminded about the kinds of semantic
data that should probably be included.

The semantic markup supports namespaced statements. The list of valid namespaces
is gathered from the Wiki’sInterWiki list. For example, the statement
[[MetaData(Wardrobe:JumpSuit, Spandex)]]

tells us that the hero in question wears a flashy spandex jump suit, and that the specifics
on the style of dress can be found in the Wardrobe Wiki. Respectively, the statement
[wiki:WikiTwo/PageTwo OtherWiki:SeeFrom: wiki:WikiTwo/PageTwo]

represents the situation where the page ’PageTwo’ of the Wiki ’WikiTwo’ has a relation
with the referencing page defined by the page ’PropertySee’ in the Wiki ’OtherWiki’.
Naturally, by adding the line
dc http://purl.org/dc/elements/1.1/
to theInterWiki list of the Wiki in question enables the user to employ DublinCore6

definitions in the Wiki pages. AlthoughInterWiki lists are currently not user-editable
in MoinMoin, theInterWiki list provides a relatively clean and straightforward way to
add new scope to Wiki editing. Graphingwiki uses the namespaces merely as URI pre-
fixes to the resource names, the RDF data corresponding to theresource is not fetched.
Still, the namespaced URIs offer some advantages, as users can use standardised seman-

6 http://dublincore.org/

5

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

tic tags with well-defined meanings, some primitive inference rules involving different
namespaces can be used, and external RDF tools can utilise the full scope of the ex-
ternal semantic data. The semantic data in the Wiki data can also be dumped from the
Wiki in N3 [3] notation for further analysis with external RDF tools.

2.3 Visualisation

Visualisations are composed of the node of the current Wiki page, the links leading to
the page and from the page, and the nodes depicting the linkedpages. Alternatively, all
pages belonging to a category of the current page can be used as the root nodes of the
graph, instead of merely the current page node. Visualisinga category shows a whole
field at one glance, including the direct and indirect relations of all the members, along
with their immediate surroundings.

Page tags can be used to colour the nodes of the graph, and pages can be filtered
based on their tags. Respectively, augmented links are coloured with respect to their
link tags, by which they can also be filtered. Filtering can greatly reduce the clutter in
the visualisation, and helps in concentrating to desired aspects of the data. Graphs can
also be ordered with respect to one of the page tags. The tag values are lexically sorted,
determining the rank of the nodes corresponding to the pages. Colouring and ordering
the nodes offers two dimensions by which to organise the semantic data.

As an example, Figure 3 depicts a visualisation made by Graphingwiki with data
automatically extracted from the WiFiPedia7 wireless standard resource.

2.4 Inference

While visualisation makes semantics comprehensible, inference makes it operational.
Generally speaking, inference is used to extend the set of known facts with the help of
rules that concern them, and to find the facts, if any, that prove a stated goal. Inference
engines that take the first approach are called forward chaining, as they start from valid
data, while backwards chaining starts from the goal to be proved, and apply known facts
and rules to produce a proof. [16]

A backwards-chaining inference engine is used to answer queries on semantic data.
The engine uses Horn clause logic, i.e. clauses that do not have more than one positive
literal, also used by many logic programming approaches such as Prolog. Horn clauses
have desirable properties in that their satisfiability is solvable in polynomial time with
algorithms linear to formula size. As the semantic data can be expressed in the terms of
RDF triples, which are basically simple relations, it is straightforward to map them as
clauses.

The inference rules and queries are stored as Wiki pages for easy editing and refer-
ence. The rules are expressed in the N3 notation, as Graphingwiki markup extensions
do not include any way to express them. The result of the queryis a set of RDF triples,
also in N3 format, that maintain the conditions presented bythe query. For example,
according to the old adage “the enemy of my enemy is my friend”an evil mastermind,
Dr. X, might want to query the superhero Wiki for enemies of his enemies to find new

7 http://www.wifipedia.org/

6

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Legend

Defines Uses

WiFipedia

802.11GB15629.11-2003 802.1X

01

02802.1AA

802.11n

802.11j 802.11f802.11s

802.11i 802.11o

802.11e

WEPWAPI

EAPOL

Key-Management

03

RSN TSN 04

WRAP CCMP TKIP

EAP-LEAP

EAP-PEAP

EAP-GTC

EAP-AKA

EAP-FAST

EAP-SIM

EAP-TLS

EAP-TTLS

EAP-IKEv2

05

TLS

06

AES-in-OCB-mode AES-in-CCM-mode

RC4

07

10

AES

CBC-MAC Counter-Mode

11

12

13

Fig. 3. Visualisations of wireless networking standards using data from WiFipedia.

7

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

allies to battle his nemesis, Goody Two Shoes. The rule, representing Dr. X’s notion on
enemies and allies, and the query would be as follows:

{?x Enemy ?y. ?z Enemy ?x} => {?z Ally ?y} .
{?who Ally DrX} => [] .

The query could result in the following reply:

CookieMonster Ally DrX .
DrEvil Ally DrX .
PowderedToastMan Ally DrX .
GoodyTwoShoes Ally DrX .

Having disproved the old adage, Dr. X curses his wretched query in frustration.

3 Practical usage scenario

Graphingwiki has been used for the purpose of discerning andvisualising interdepen-
dencies of protocols. Data is gathered from technical specifications and from experts of
different protocol environments. The accumulated data is then visualised, bringing up
different aspects from the data related to protocol dependency and security. The result-
ing views can additionally be used as a communication methodbetween researchers and
other actors. Inference is used as an method of gaining deeper insight to dependency
chains and networks.

3.1 Protocol dependency

Protocols can be thought of as languages shared by the information systems for com-
munication. Most current information systems implement a large number of protocols,
most of which it requires for normal functionality. In effect, the system can be commu-
nicated with by a number of means, and it parses diverse network data. This makes the
system, as the other systems on the network, dependent on theimplemented protocols
in a multitude of ways. Assessing the dependency of protocols and the predominance
of the protocols in the network is critical in the view of its robustness.

The issue is further complicated by the fact that protocols within a single protocol
family or even between protocol families often have connections. Thus, the impact area
of vulnerabilities in a shared component is greatly expanded due to protocol depen-
dency. This may lead to faults that can have a significant effect on an infrastructure.
[9]

3.2 Extraction and augmentation of data

Initially, protocol data is gathered from standardisationorganisations and from indices
collecting data on standards. Examples of semantic data in standards include status,
types of relations with other standards, the protocols involved and so forth. The data
is gathered with scripted methods and inserted into corresponding Wiki pages with

8

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

similar means. Most of the structured data in the standard texts is imported, following
the approach of aggressive population of semantic and ontological data from existing
databases [4]. This results in the quick generation of a relatively rich body of data as
a starting point for a comprehensive protocol Wiki. Also other semistructured data on
standards can be inserted.

While the process of adding given semistructured data cannot be effectively auto-
mated for all cases, the extraction approach is a pragmatic one, making the best use
of the data available. Although the different data sources may adhere to any number
of conflicting explicit or implicit ontologies, a lightweight approach to ontology gives
the leverage to process the resulting primordial soup. Thisrepresents a bootstrapping
process for semantic Wikis, as the benefits of semantic data are illustrated only by the
availability of such data. These benefits far outweigh the costs of generating the seman-
tic data along with the data. Similar approaches to data extraction have been applied
successfully [20] [19].

After the initial data gathering phase, the data is insertedinto Graphingwiki. The
details of this process are somewhat subject-dependent, but follow the same basic prin-
ciples. Whenever new concepts are introduced in the data, new Wiki pages are created
to describe them, and data concerning a protocol or other concept already in the Wiki is
simply updated to that page.

As much of this data as possible is inserted to the pages in theforms of the attributes
of the concept and its relations to other concepts, as these forms of data are machine-
processable. Page templates can be used to help formalise the extended markup [24].
On the other hand, custom semantic tags for specific situations or scenario can be used.
Explanations, quotes, and WWW resources can be written on the page as is.

In the collaboration phase, the experts are invited to join in to view and augment
the results gathered in the Wiki from their interviews and additional sources. Experi-
ence has indicated that it may help in this phase if the data gathering phase has not
been exceedingly careful in filtering contradictory or controversial arguments about the
protocols. This is due to the fact that experts are often morekeen to remove such flaws
from existing data than to add complementary data to an emptypage.

During these phases the data body is developed from a fairly generic and dry view-
point towards exceedingly rich and specific use cases. Usersimmediately benefit from
the practical domain experience included in the Wiki.

3.3 Visualisation and Reasoning

The ability to make logic deductions on the expert-supplieddata can unearth results not
easily discovered by traditional means. As an example from the Wiki context, Decker
et al. uses reasoning to enable reuse of software engineering knowledge [8]. The ap-
proach taken in the development of Graphingwiki with respect to reasoning techniques
is straightforward and pragmatic, so that the inclusion of logic is based on approaches
that are known to work and are required. The focus lies heavily on immediate benefits
of reasoning, the inclusion of higher-order structures is deferred until they are explicitly
needed [4].

As an example case of inference on the domain of protocol dependency, the true
cause of a network error related to two hosts containing a plenitude of services can be

9

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

inferred from a data body on protocols and related implementations. Similarly, the gross
effect of a single vulnerability for a network can be assessed, optionally involving even
chains of vulnerabilities and exploits. Similar approaches have emerged in the context
of security research, particularly in network vulnerability assessment (e.g. [15]), but
also in inspecting the configurations of single workstations (e.g. [10]).

3.4 Limitations

The population of a Wiki with data from semistructured sources is a useful facility, but
it may not be applicable to a portion of available material due to technical or licensing
issues. In some cases, the data abstraction features may suffer from some constraints.
Visualisation techniques are naturally limited to a certain volume of data that they can
relay in an efficient manner.

Reasoning also has its limitations that have hindered its use in many cases. Main
problem is the state space explosion resulting from massiveknowledge bases. This can
be countered by using monotonic logic and highly domain-specific data sets, although
limits on query tree depth and traversal time can also be of help. All the statements
made with Graphingwiki are essentially monotonic, as they only bring more data to
the knowledge base without contradicting earlier statements. This is due to the inherent
lack of meaning of the statements in the Wiki, as the different aspects and relations are
only given meaning by humans interpreting them, or by the inference rules and queries.

While the statements are limited in their effect, there are no similar restrictions to
the inference rules queries. Thus, great care must be taken when generating them, as
they might bring contradiction or belief revision into the system. The heterogeneity of
the data gathered from various sources can present limitations to reasoning. As there
are no guarantees on given semantic data being present on allconcerned pages, the
inference rules may not match all relevant data [19].

4 Discussion

Semantic Wikis are a natural placeholder for various kinds of domain-specific data that
are produced in normal course of work, enabling collaboration and groupwork. The
gathering and visualisation of information was found straightforward with the methods
explained in this paper. Visualising the relations of protocols has proved to be an effec-
tive method for realising the scope of a protocol in application and network contexts.
The visualisations have been used in various stages of protocol-related vulnerability
work.

It has been claimed that semantic tools also have applications in learning by evaluat-
ing, manipulating, and presenting data in new ways [20]. Visualising this data according
to the requirements of a given domain presents an effective method for making its con-
tents easier to grasp by humans. Consequently it is no surprise that in addition to fulfill-
ing its intended purpose for creating protocol visualisations, Graphingwiki has proved
to be useful for a variety of other tasks. New application areas emerged at a constant
rate during its development, indicating that there is a great need for lightweight infor-
mation visualisation facilities. Some of the these areas are illustrated by the examples
in the following paragraphs.

10

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Figure 4 is a organisational chart of a company that has been created with Graph-
ingwiki. The nodes of the graph represent the roles of different employees while edges
report the reporting and management chains between the roles. The roles are ordered
by their required experience and colored according to the departments they belong to.
Similarly, Wiki pages containing data on employee responsibilities and fields of know-
how could enable efficient resource management and aid in problem resolution. Social
network mapping techniques could be used on this data even further, for example to
identify communities and communication bottlenecks.

OrgRoles/CoffeeMaker

OrgRoles/Assistant

OrgRoles/COO

OrgRoles/Purchaser OrgRoles/FinancialController

OrgRoles/SalesRepresentative OrgRoles/SalesManager

OrgRoles/FrontLineSupport

OrgRoles/SupportTeamLeader

00 years 03 years

OrgRoles/TechnicalWriter

OrgRoles/ServicesTeamLeader

OrgRoles/Trainer

OrgRoles/CustomerSupportEngineer

OrgRoles/QA-Engineer

OrgRoles/VP-Engineering

OrgRoles/PublicRelationsOfficer OrgRoles/DirectorOfMarketing

OrgRoles/ArtDirector

OrgRoles/DirectorOfSales

OrgRoles/CopyWriter

OrgRoles/Client-Developer OrgRoles/Client-DeveloperTeamLeader

OrgRoles/Server-Developer

OrgRoles/Server-DeveloperTeamLeader

OrgRoles/PreSalesEngineer

OrgRoles/TechnicalConsultant

OrgRoles/SafetyOfficer

06 years

OrgRoles/KeyAccountManager

OrgRoles/BizInt-Officer

OrgRoles/VP-Sales

OrgRoles/ChannelManager

OrgRoles/SystemAdministrator

OrgRoles/CIO

OrgRoles/CEO

OrgRoles/HR-Manager

OrgRoles/IPR-Manager OrgRoles/CTO

OrgRoles/Researcher

OrgRoles/LegalAdvisor

10 years

OrgRoles/VP-BusinessDevelopment

15 years

OrgRoles/ManagementGroupMember

OrgRoles/BoardMember

OrgRoles/ShareHolder

Legend

Reports to Supervises

R&D Sales & Marketing Support

Fig. 4. An organisational chart created with Graphingwiki.

Figure 5 represents a survey on the research on laser technologies and on the man-
ufacturers of laser products. Data on different actors of the field was inserted to a Wiki,
along with their relations. This view on the Wiki data depicts the Finnish laser product
vendors by location, with links to the application areas of their products.

Graphingwiki could be enhanced in a variety of ways to increase its efficiency and
expressiveness, and to make it more approachable for users.A full support for different
levels of ontology formalisation would be an obvious benefit, along with mechanisms

11

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

MedicalApplications

DCA

Coating

Cavitar

WeldingAndCutting

Surveying

Spectroscopy

HeatTreatment

Communication

LaserCooling

Toptica

Singulase

CoherentFinland

Corelase

Liekki

Epicrystals

Modulight

Legend

Application

HelsinkiRegion International Tampere Turku

Fig. 5. Different laser applications, their producers, and locations.

that check the page’s adherence to a specified ontology [18][8]. RDF schema to manip-
ulate typed data could be added, as well as some OWL features.Many of the implicit
Wiki relations, such as being part of a certain category or being made with a specific
template, could be formed explicitly with these facilities. Importing RDF data related
to instances of other namespaces would also increase the application scope of Graph-
ingwiki.

The creation of ontologies might be easier and more scalableif users could first use
the augmented link syntax to denote all statements, shifting to use the MetaData-macro
only when it has been ascertained that the values of the link tags do not have further
structure and can be considered to be mere tag value data.

Some of the semantic data in a Wiki could also be automatically generated from
the knowledge of who created and modified the page, creation date, data on referring
page given by the browser, and so on [8]. Similarly, page categories could be automat-
ically suggested to the user by comparing the page with representatives from existing
categories using Bayesian classification.

The inference engine in the extension will yet require some work to be fully op-
erational in a practical manner. A major part of this work includes creating the basic
queries representing the common use cases of the inference engine. It also includes
queries with additional functionality such as “find all of the links from the Wiki that
point to non-existing pages”. Visualisating the results ofthe queries would increase
their understandability in the case of complex queries.

12

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Users could be greatly aided by the creation of semantic datamacros specific to
their domains of knowledge. Further, the user interface could include tag word sugges-
tions to help converge the tagging scheme, similarly as in the del.icio.us service and
the Makna semantic Wiki. Another aid for the tagging scheme would be the use of
synonym-declaring relations. However, experiences from Wikipedia suggest that prob-
lems regarding the selection of tags are not critical, and that the situation is further
ameliorated by the Wiki pages describing the tags [24].

The visualisation style and the GUI would benefit from user interaction studies and
research on other visualisation styles. Different dimensional views such as Zzstructures
and Polyarchies could be used to produce more data-compact views [13]. Wiki pages
could include navigation section of related links created with the help of faceted classi-
fication [23] [1], providing another alternative to the traditional wiki category scheme.

Many common use cases of Wikis, such as systems documentation and contracts,
can encompass a smorgasbord of pages while placing great demands for the trustwor-
thiness of the included data. As Wiki pages are by nature under constant revision and
refinement, these use cases require facilities for specifying the page versions that con-
stitute the de facto state of the entity. Visualisations that are bound to specific page
revisions could be used to facilitate the version control ofsuch entities while making
their structure easier to apprehend.

Encapsulating the revision state in visualisations is a similar concept as the transi-
tion of software version control from the per file Revision Control System (RCS) into
the set oriented Concurrent Versions System (CVS). Whereasin software development
the module hierarchy facilitates easy revision tagging, innon-hierarchical Wikis the
bound visualisations can provide for one click capture of a snapshot of a larger concept.
Following the evolution of these visualisations could giveinsight into the development
of the entity, and the processes involved.

5 Conclusions

This paper has shown how the MoinMoin Wiki can be extended to include some se-
mantic capabilities. Graphingwiki uses the MoinMoin plugin mechanism along with its
existing capabilities of linking and category pages to create a simple and lightweight
semantic tagging scheme. The tagging scheme was further used to provide for the visu-
alisation of semantic data and making reasoning upon it.

Graphingwiki has been used for knowledge engineering in thedomain of network
protocols. The visualisations have proven to be an effective aid in discovering depen-
dencies between protocols, while the reasoning capabilities showed promise for uncov-
ering complex relationships in the semantic data. The visualisations have been used in
various stages of protocol-related vulnerability work.

Future research on Graphingwiki include analyses on the visualisation style and
user interaction methods in the tool. This research could result in more compact and
easily manageable views. Another future direction is the inclusion of more sopisticated
semantic features, the lack of which currently limits the use of Graphingwiki with other
semantic tools and data sources.

13

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

A great demand was noted for the management and visualisation of data from di-
verse domains. Usage of the tool was then attempted in a number of application areas.
Initial experiences on the applicability of Graphinwiki for purposes outside its intended
domain of application were very encouraging.

Therefore, a similar approach to handling, visualising, and inferring on data would
probably be of much use in many other domains, including enterprise resource man-
agement and social network mapping. Organisational human resources related skill and
social network mapping and documenting information systems from deployment level
to strategy view with dimensions on security policy and system interdependencies are
examples of envisioned use cases.

References

1. Aumueller, D. SHAWN: Structure Helps a Wiki Navigate. In Proceedings of the
BTW-Workshop "WebDB Meets IR", Karlsruhe, Germany, March 1, 2005. URL:
http://dbs.uni-leipzig.de/~david/2005/aumueller05shawn.pdf

2. Aumüller, D., Auer, S. Towards a Semantic Wiki Experience- Desktop Integration and
Interactivity in WikSAR. In proceedings of the 1st Workshopon The Semantic Desktop - Next
Generation Personal Information Management and Collaboration Infrastructure, Galway,
Ireland, November 6, 2005. URL:
http://www.semanticdesktop.org/SemanticDesktopWS2005/final/22_
aumueller_semanticwikiexperience_final.pdf

3. Berners-Lee, T. An RDF language for the Semantic Web - Notation 3 (1998). URL:
http://www.w3.org/DesignIssues/Notation3.html

4. Berners-Lee, T. WWW2004 Keynote. Keynote speech in the 13th World Wide Web
Conference, New York City, US, May 17-22, 2004. Slides available at:
http://www.w3.org/2004/Talks/0519-tbl-keynote/

5. Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web. Scientific American 284, May
2001. URL:http://www.scientificamerican.com/article.cfm?
articleID=00048144-10D2-1C70-84A9809EC588EF21&catID=2

6. Cunningham, W. et. al. Do The Simplest Thing That Could Possibly Work. URL:
http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork

7. Cunningham, W. et. al. Wiki Design Principles. URL:
http://c2.com/cgi/wiki?WikiDesignPrinciples

8. Decker, B. et. al. Self-organized Reuse of Software Engineering Knowledge Supported by
Semantic Wikis. Workshop on Semantic Web Enabled Software Engineering (SWESE), at the
4th International Semantic Web Conference (ISWC 2005), Galway, Ireland, November 6,
2005. URL:http://www.mel.nist.gov/msid/conferences/SWESE/
repository/11self-org_reuse_of_se.pdf

9. Eronen, J., Laakso, M. A Case for Protocol Dependency. In proceedings of the First IEEE
International Workshop on Critical Infrastructure Protection, Darmstadt, Germany, November
3-4, 2005. URL:http://www.ee.oulu.fi/research/ouspg/protos/sota/
matine/IWCIP2005-dependency/index.html

10. Govindavajhala, S., Appel, A.W. Windows access controldemystified (2006). URL:
http://www.cs.princeton.edu/~sudhakar/papers/winval.pdf

11. Hepp, M., Bachlechner, D., Siorpaes, K. OntoWiki: Community-driven Ontology
Engineering and Ontology Usage based on Wikis. In proceedings of the 2005 International
Symposium on Wikis, San Diego, US, Oct 16-18, 2005. URL:http:
//www.heppnetz.de/files/ontowikiDemo-short-camera-ready.pdf

14

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

12. Manola, F., Miller, E. Resource Description Framework (RDF) primer. W3C
Recommendation (2004). URL:http://www.w3.org/TR/rdf-primer/

13. McGuffin, M.J., Schraefel, m.c. A Comparison of Hyperstructures: Zzstructures, mSpaces,
and Polyarchies. In Proceedings of ACM Conference on Hypertext and Hypermedia, Santa
Cruz, USA, August 9-13, 2004. URL:http://eprints.ecs.soton.ac.uk/9230/

14. Muljadi, H. et. al. Semantic MediaWiki: a user-orientedsystem for integrated content and
metadata management system. In Proceedings of the IADIS International Conference
WWW/Internet 2005, Lisbon, Spain, Oct 19-22, 2005. URL:
http://www-kasm.nii.ac.jp/papers/takeda/05/hendry05icwi.pdf

15. Noel, S. et. el. Efficient Minimum-Cost Network Hardening Via Exploit Dependency
Graphs. In proceedings of the 19th Annual Computer SecurityApplications Conference
(ACSAC ’03), Las Vegas, US, December 8-12, 2003. URL:
http://www.acsa-admin.org/2003/papers/98.pdf

16. Norvig, P. Paradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp. Morgan Kaufmann Publishers (1992)

17. Rocha, L.M., Bollen, J. Biologically motivated distributed designs for adaptive knowledge
management. In: Segel, L., Cohen, I. (eds) Design Principles for the Immune System and
other Distributed Autonomous Systems. Oxford University Press, Oxford, UK (2001) 305-334

18. Schaffert, S., Gruber, A., Westenthaler, R. A Semantic WIKI for Collaborative Knowledge
Formation. In proceedings of SEMANTICS 2005 Conference, Vienna, Austria, November
23-25, 2005. URL:http://www.salzburgresearch.at/research/gfx/
SemWikiForCollKnowForm_20060120.pdf

19. Schraefel, M.C. et. al. The evolving mSpace platform: leveraging the Semantic Web on the
Trail of the Memex. In Proceedings of the 16th ACM Conferenceon Hypertext and
Hypermedia, Salzburg, Austria, September 6-9, 2005. URL:
http://eprints.ecs.soton.ac.uk/10710/

20. Shadbolt, N. et. al. CS AKTive Space or how we learned to stop worrying and love the
Semantic Web (2004). URL:http://eprints.ecs.soton.ac.uk/8817/

21. Shirky, C. The Semantic Web, Syllogism, and Worldview. Clay Shirky’s Writings About the
Internet (2003). URL:
http://www.shirky.com/writings/semantic_syllogism.html

22. Shirky, C. Ontology is Overrated: Categories, Links, and Tags . Clay Shirky’s Writings
About the Internet (2005). URL:
http://www.shirky.com/writings/ontology_overrated.html

23. Völkel, M. Personal Knowledge Management with SemanticWikis (2005). URL:http:
//www.xam.de/2005/12_voelkel_oren_SPKM_submission_eswc2006.pdf

24. Völkel, M., Krötzsch, M., Vrandecicm, D., Haller, H. Semantic Wikipedia. In proceedings
of the 15th International World Wide Web Conference, Edinburgh, UK, May 22-26, 2006.
URL: http://www.aifb.uni-karlsruhe.de/WBS/hha/papers/
SemanticWikipedia.pdf

25. Völkel, M. et. al. Semantic Wiki State of The Art Paper. Under development. URL:http:
//wiki.ontoworld.org/index.php/Semantic_Wiki_State_of_The_Art

15

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Reusing Ontological Background Knowledge
in Semantic Wikis

Denny Vranděcić and Markus Krötzsch

{vrandecic,kroetzsch}@aifb.uni-karlsruhe.de
AIFB, Universität Karlsruhe, Germany

Abstract. A number of approaches have been developed for combining wikis
with semantic technologies. Many semantic wikis focus on enabling users to
specify properties and relationships of individual elements. Complex schema in-
formation is typically not edited by the wiki user. Nevertheless, semantic wikis
could benefit from taking existing schema information into account, and to allow
users to specify additional information based on this schema.
In this paper, we introduce an extension of Semantic MediaWiki that incorporates
schema information from existing OWL ontologies. Based on the imported ontol-
ogy, the system offers automatic classification of articles and aims at supporting
the user in editing the wiki knowledge base in a logically consistent manner. We
present our prototype implementation which uses theKAON2ontology manage-
ment system to integrate reasoning services into our wiki.

1 Introduction

Wikis allow for the simple and quick editing of web content. They considerably lower
the barrier for contributing to a website, and especially allow to fix small glitches and er-
rors quickly. This has lead to the deployment of wikis both for web communities – such
as the programming languages pattern group where the idea of wikis originated [10] –
and as an extension to existing intranet systems in corporate settings.

As of today, a number of approaches have been developed in order to combine wikis
with semantic technologies, and actual implementations of semantic wikis are becom-
ing more and more mature. While the actual goals and methods of existing systems vary
greatly, many semantic wikis focus on enabling users to specify properties and relation-
ships of individual elements or articles. Complex schema information, as considered in
expressive semantic web languages such as OWL [23], is typically not considered for
being edited in the wiki.

Instead of extending semantic wikis into general purpose ontology editors – which
is a task where dedicated ontology editors [19, 25, 14] are usually more suitable for
– we investigate how semantic wikis can benefit from existing, possibly expressive
ontologies. Especially in corporate settings, a fixed schema for metadata is often already
in use and part of the internal workflow of the company. Changes to the schema typically
are a well managed task. Still, wikis can be a convenient tool for managing or annotating
instance data for complex ontologies. Schemas often are quite stable, whereas instance
data changes at a much higher pace. In practice, this means that semantic wikis should

16

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

be able to take existing schema information into account, and allow users to specify
additional information based on this schema.

In this paper, we present an extension of Semantic MediaWiki [15, 27] that incor-
porates schema information from existing OWL ontologies. Based on an imported on-
tology, the user interface facilitates the reuse of the ontological concepts to categorize
articles and the properties to type links. It offers an automatic classification of articles
and aims at assisting the user to edit the wiki knowledge base in a logically consis-
tent manner. In our prototype implementation, we employ the KAON2 [12] system to
integrate necessary reasoning services into our wiki.

The following section describes different use cases and scenarios, where the pre-
sented system would be of advantage. This is followed by the details of our mapping to
OWL (Sect. 3) and concrete uses of ontological data (Sect. 4). We then describe how the
implementation is working and how our system is used (Sect. 5). Before we conclude
our work in the last section, we offer an overview over related work (Sect. 6).

2 Use Cases and Requirements

We start our investigations by discussing typical use cases for the reuse of ontological
knowledge in semantic wikis. This motivates our approach and allows us to derive basic
requirements for its technical realization.

Since one obvious requirement for any practical system is that it succeeds in per-
forming its computations, we explicitly exclude global scale wikis such as Wikipedia1

from our target environments. In the context of expressive ontology languages, one is
quickly confronted with computational problems that are not tractable, so that semantic
technologies typically do not scale indefinitely. However, wikis are also employed very
successfully in contexts where the overall amount of data is much smaller.

Since we started to develop Semantic MediaWiki, we have been approached several
times by companies that are interested in using semantic wikis in an enterprise setting.
Wikis indeed are successfully applied to cooperatively manage knowledge in working
groups or project teams. Concurrent access and ease of use are important advantages
over other content management systems in this setting. The added value of semantic
wikis in this scenario is the ability to leverage the wiki’s contents in other enterprise
applications.

For a concrete scenario, consider a wiki used for coordinating a particular project
team within a company. Using semantic technologies, relevant parts of the wiki data
shall automatically be gathered by the company’s intranet search engine. In the wiki,
project members coordinate their activities, and describe their progress on their deliv-
erables. This data can then be collected from the wiki and reused in other applications,
e.g. to create monthly report figures, or even up-to-date status reports that are generated
on request. As the semantic wiki reuses the company’s metadata schema for documents
and respects the associated constraints (e.g. no document must have more than one title
and topics must stem from a predefined set of topics), the automatic integration into the
corporate information infrastructure works smoothly.

1 http://www.wikipedia.org

17

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Another frequent use case is to use existing ontologies to bootstrap the contents and
vocabulary of a semantic wiki. For a concrete example, assume that an international
conference wants to use a wiki for gathering information around the event. Participants
can use the system to exchange information about accommodation and travel, to coordi-
nate Birds-of-a-feather (BOF) sessions, or to actively provide links to their presentation
material. At the same time, the organizers publish official schedules on protected wiki
pages. Using a semantic wiki, this data can be queried and extended in complex ways,
e.g. to provide a scheduling system that suggests sessions and BOF sessions based on a
participants interests. Also, if the conference management system supports some form
of RDF export, one can initialize the wiki pages with basic information about accepted
papers and participants. The ESWC2006 wiki2 is based on such a bootstrapped system.

In a third example, we consider the usage of semantic wikis in personal knowledge
management [20]. There, the wiki is operated as a desktop application and cooperative
editing is not required. Semantic technologies simplify data organization and search,
and the machine-processable annotations provide suitable interfaces with other seman-
tic desktop applications. For instance, the wiki can be used to take notes about persons,
and one would like to combine this information with address book applications. Using
vocabulary from existing ontologies, the wiki becomes compatible with various types of
metadata, and thus its information could be used in RDF based desktop tools. Another
example would be to import Friend-of-a-friend [8] files directly from the web.

All of the above use cases stem from our practical experience, and we have been
asked by companies and organizations to support them. The following requirements are
emerging from these use cases:

– referring to existing ontological vocabularies from the wiki,
– incorporating schema information and constraints from external ontologies,
– exporting data from the wiki in a standard ontology language,
– importing data from external ontologies, such that it is represented and edited

through the wiki.

Note the difference between fully importing external data into the wiki and merely
incorporating external information for editing tasks. The former implies that the im-
ported knowledge is represented in the wiki afterwards and can be edited by users,
whereas the latter means that the wiki is aware of additional external data or constraints
that must be taken into account, but that cannot be modified within the wiki. This is
further described in Sect. 4.1.

We argue that the full import and representation of all kinds of complex schema in-
formation into the wiki is not an immediate requirement, and is often not even desirable
at all. Firstly, from a user perspective, it is quite complicated to edit such schema infor-
mation within a wiki, and dedicated graphical user interfaces of full-fledged ontology
editors might be much better suited for this task [19, 25, 14]. Secondly, in many of the
above use cases the ontological schema should not be changed by users of the wiki at
all. In the opposite, ontologies are often considered as vehicles to achieve interoperabil-
ity with other applications, and this requires that all participants adhere to the original

2 http://wiki.eswc2006.org

18

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

schema. The evolution of the schema is usually done by a central board, as described,
for example, by the DILIGENT methodology [28]. Thirdly, distributed ontology edit-
ing in itself is not a trivial topic. In contrast to the situation in software engineering,
it is neither easy nor usual (although desirable) to separate ontologies into indepen-
dent modules of networked ontologies. Furthermore, small changes in some parts of an
ontology can have strong effects on the overall semantics.

3 Semantic MediaWiki in Terms of OWL DL

Semantic MediaWiki is an extension to the MediaWiki system that allows users to add
various types of ontological information to the wiki, and which forms the basis of the
implementation that we describe in Sect. 5. In this section, we relate the formal in-
formation gathered within this wiki system to the Web Ontology Language OWL. In
particular, we discuss export and import of OWL DL ontologies.

3.1 Extracting Ontological Knowledge from the Wiki

We first describe the expressive means that are available in the wiki, and specify their
semantics in terms of the OWL DL part of the Web Ontology Language. This defines
the formal semantics of the annotations that are used in the wiki such that a canoni-
cal OWL DL export becomes possible. We remark that the user interface of Semantic
MediaWiki does not strictly require the formal interpretation in terms of OWL DL, or
the restriction to the expressive means of this language. Since most complex features
of OWL are not used in Semantic MediaWiki, one could even argue that the wiki’s
annotation mechanism might as well be used to author different ontology languages.
However, we make use of some characteristic OWL features such as equality reasoning
and transitive roles, and we feel that OWL DL’s set-based semantics for classes and
roles is more intuitive than the semantics of RDFS.

Also recall that OWL DL is conceptually related to description logics. In particular,
one can divide ontological elements intoinstancesthat represent individual elements
of the described domain,classesthat represent sets of individuals, androleswhich rep-
resent binary relations between individuals. The way in which Semantic MediaWiki
represents knowledge was partially inspired by OWL DL and one can naturally relate
the elements of the wiki, i.e. the individual content pages, to the basic vocabulary of
OWL. Technically, the MediaWiki system employsnamespacesto distinguish several
types of content pages, and our semantic interpretation exploits this mechanism of “typ-
ing” pages as follows:

OWL individuals are represented by normal article pages. These pages typically con-
stitute the majority of the wiki’s contents, mostly contained in the MediaWiki’sMain
namespace. However, there are several additional namespaces, such asImage or User,
which also are interpreted as individuals.

19

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

OWL classesin turn have natural counterparts in the wiki in form of MediaWikicat-
egories. The category system, which was introduced only in 2004 [29], quickly be-
came the most important feature for classifying articles in Wikipedia. Categories are
represented as pages within theCategory namespace. They can be organized in a hi-
erarchical way, but it is not possible to make a category contain other categories. Thus
Wikipedia’s category system is more similar to the semantics of classes in OWL DL
than to the semantics of classes in RDFS.3

OWL properties, i.e. roles in description logic, do not have a counterpart in Medi-
aWiki, and were introduced by the Semantic MediaWiki extension. OWL further dis-
tinguishes object-properties (describing relationships between two individuals) from
data-properties (associating individuals with values of a given datatype), and a similar
distinction is found in Semantic MediaWiki. Object-properties are represented by pages
in the namespaceRelation, whereas data-properties are represented by pages in the
namespaceAttribute.

In addition to the above correspondences, the usage of some namespaces in Me-
diaWiki suggests to ignore them completely for semantic interpretation. Most promi-
nently, this includes allTalk pages since they do not represent separate concepts, but
are merely used to collect notes and discussions on other articles. Semantic MediaWiki
can be configured to ignore annotations given on such pages according to intended us-
age.

Based on the above mapping to OWL, Semantic MediaWiki allows users to describe
various ontological statements within the wiki. An incomplete overview of OWL con-
structs that can be represented in the wiki is given in Table 1. OWL statements about
some OWL individual/class/role are specified in Semantic MediaWiki by providing an-
notations on the wiki page that corresponds to this element. For example, in order to
state that the object-propertyis located inholds betweenSemWiki2006andBudva, one
writes[[is located in::Budva]] within the article about SemWiki2006. Further
details on annotation in Semantic MediaWiki and the underlying principles are found
in [27].

Semantic MediaWiki includes an export function that generates OWL/RDF doc-
uments according to mappings such as the ones in Table 1. The export function also
associates URIs with all wiki pages. These URIs bijectively correspond to concrete
pages. However, they are notidenticalto the article URLs in order to prevent confusion
between ontological concepts (e.g. the city of Budva) and actual HTML documents
(e.g. the article about Budva).

3.2 Adding External Ontologies

Table 1 indicates that, besides some rather simple schema information, the wiki is
mainly used to provide concrete descriptions of individuals and their relationship. In
description logics, this assertional part of a knowledge base is known as theABox, and

3 Note that the informal semantics of categories as used in Wikipedia varies. E.g.Montenegro
does not describe the class of all “Montenegros,” but the class of all article topics related to
Montenegro.

20

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Table 1.Representation of OWL constructs in Semantic MediaWiki.

OWL Semantic MediaWiki

OWL individual normal article page
owl:Class article in namespaceCategory
owl:ObjectProperty article in namespaceRelation
owl:DatatypeProperty article in namespaceAttribute

Statement about elementpageSyntax in wiki-source ofpage

object-property [[property_name::object_article]]

attribute-property [[property_name:=value_string]]

rdf:type class_name [[Category:class_name]] (on article pages)
rdfs:subClassOf class_name[[Category:class_name]] (on category pages)

in our case we even restrict to ABox statements without any complex concept terms.
Moreover, the annotations in Semantic MediaWiki are restricted in such a way that the
exported OWL/RDF cannot be logically inconsistent. In the following, we discuss how
the ontologically simple knowledge base of the wiki can be combined with complex
schema information from an external ontology.

We wish to combine the OWL representation of the wiki contents with an exter-
nal OWL ontology. Since merging of OWL DL specifications is trivially achieved by
taking the union of their statements, the only problem in doing so is the mapping be-
tween elements of the two ontologies. It was already mentioned that URIs for all el-
ements of the wiki are generated automatically. These URIs are very similar to the
page URLs of the wiki, and do generally not agree with the URIs used in the ex-
ternal ontology. However, OWL provides us with expressive means to describe that
two different URIs represent the same entity (with respect to its extensional inter-
pretation). Depending on the type of entity that one considers, this is achieved with
owl:sameAs, owl:equivalentClass, andowl:equivalentProperty. We incorpo-
rate this specification into the wiki via a new attributeequivalent URI as shown in
Table 2. To give an example, on the pageCategory:Person one could add the state-
ment[[equivalent URI:=http://xmlns.com/foaf/0.1/Person]], thus stating
that every page tagged with this category describes a person in the sense of the FOAF
vocabulary.

Table 2.Mapping of concepts to external URIs in Semantic MediaWiki.

OWL Semantic MediaWiki

owl:sameAs URI [[equivalent URI:=URI]] (on article pages)
owl:equivalentClass URI [[equivalent URI:=URI]] (on category pages)
owl:equivalentProperty URI [[equivalent URI:=URI]] (on relation/attribute pages)

While this provides a convenient way of mapping ontologies, this new expressive
feature must be handled with care. The reason is that it yields numerous ways of creating
undesired OWL/RDF specifications with the wiki. For example, one can create logical

21

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

inconsistencies by declaring a non-empty wiki-class equivalent toowl:Nothing. While
this can still be disallowed rather easily, it is also possible to make statements that are
not possible in OWL DL but only in the undecidable OWL Full variant of the language.
For example, one could assign the same URI to both a class and an individual, or one
could even assign the URIs of language constructs such asrdf:type to wiki elements.
Clearly, this often leads to a meaningless specification.

Both logical inconsistency and the usage of the undecidable language OWL Full
prevent effective query answering over the wiki knowledge, and we therefore suggest
to useequivalent URI only on pages that cannot be edited by arbitrary, possibly
anonymous users. Since our use cases evolve around wikis of limited size that are used
in a closed community, it is also realistic to assume that problems can be avoided by
instructing users accordingly. Another option, discussed below, is to build appropriate
checks into the wiki. One could also disallow the use ofequivalent URI and require
an external ontology where a mapping between the URIs of the wiki knowledge base
and the target ontology is declared, but this would need to be administrated manually
and outside of the wiki.

4 Usage of Ontological Data

In this section, we discuss concrete ways of using the knowledge of an external ontology
and the associated challenges.

4.1 Inferencing Tasks

The principal purpose of specifying complex external schema information is to restrict
the possible (formal) interpretations of the wiki’s contents. Two major practical uses
of this information are to impose constraints on the data within the wiki, and to infer
additional information about this data.

Constraints are imposed by stating that certain situations are logically inconsistent.
For a simple example, one could state that the categories (classes)WorkshopandPer-
sonare disjoint. When a user tries to classify an article to belong to both classes, the
system detects the inconsistency and can react appropriately. Typically, the reaction
should involve a warning, and, if possible, an explanation. In general, inconsistency in
OWL DL can arise for very complex reasons, and huge parts of the ontology can be
involved in the deduction. The possible solutions to the resulting computational chal-
lenges are discussed in the next section. For now, let us note that the high complexity
of the required reasoning also means that humans are typically not able to detect all
consistencies easily for a complex schema. Since inconsistent ontologies do not repre-
sent any knowledge under the OWL semantics, it is clear that consistency checking is
required for all applications discussed in Sect. 2.

Another application for ontological inferencing is automatic classification of in-
stances, i.e. the assignment of OWL classes (wiki categories) to instances in the wiki.
Automatic classification helps to structure the contents of the wiki, and therefore fa-
cilitates the creation and management of the wiki’s content. In the case of MediaWiki,

22

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

categories can be used to browse the wiki pages, and help to organise the wiki in a
hierarchical way.

Besides this, classification yields a mechanism for users to understand the conse-
quences of the external schema information. For example, the schema of a company’s
human resource ontology might define a propertysupervised byto describe a relation-
ship between employees and interns. If a user now erroneously states that a certain
project is supervised by somebody, then the automatic classification will classify the
project as aperson. This supports the user in immediately detecting the misconception
even before further statements generate an actual inconsistency.

In both cases more expressive ontologies than those that are expressible with the
current means of the Semantic MediaWiki are required. Therefor the system needs to
refer to an external OWL ontology, that holds these more expressive ontologies. In
Sect. 5.3 we describe an example where such an architecture is employed.

4.2 Practical Scalability of Inferencing

Useful as they might be, complex OWL DL inferences also impose huge scalability
challenges. Reasoning in OWL DL is NET complete, and thus appears to be un-
suitable for a continuously growing knowledge base like a wiki. Yet, there are various
possibilities to build practical systems that can still solve non-trivial reasoning tasks.
We give a brief overview in the following.

First of all, it must be noted that current OWL DL reasoners are highly optimized
systems that can already deal with complex ontologies to a certain complexity and size.
So for small wikis, as they arise in many of the use cases from Sect. 2, it is quite feasible
to employ standard software systems. Also, many of the system, while (N)ET in
the worst-case, have good “pay as you go” characteristics, so that simple ontologies
require significantly less resources.

While restricting to simple ontologies can lead to improved computation time in
OWL DL reasoners, it will not suffice for larger wikis since it is still not tractable. For
such a system, the only feasible solution currently seems to be to restrict the expressive
power of the employed ontology language. Various choices exist4, and OWL fragments
such asHorn-SHIQ [13] andEL++ [3] are quite expressive while still providing poly-
nomial complexity for important reasoning tasks.

Another approach that is very interesting for reasoning in a wiki environment has
been developed for theKAON2system [17]. Reasoning there is divided into two sep-
arate processing steps: the complex terminological part of an ontology is preprocessed
in a first stage, whereas query answering over large ABoxes is performed in a second
stage. The preprocessing is still ET complete, but query answering can be per-
formed in NP (wrt. the size of the ABox). If the ontology is restricted to Horn-SHIQ,
query answering is even possible in polynomial time. Evaluations show that KAON2
performs very well for ontologies with a fixes schema and large amounts of instance
data [18] – which is exactly the scenario we address in this work.

4 Seehttp://owl-workshop.man.ac.uk/Tractable.html for an overview.

23

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

4.3 User Interface Enhancements

Finally, some uses of ontological background knowledge are possible without imple-
menting complex reasoning. In particular, one can reuse the predefined vocabulary and
known simple schema information to make suggestions during editing. In its simplest
form, the wiki could warn users when using annotations that do not belong to the vo-
cabulary that was imported into the wiki. This is not feasible in semantic wikis that are
not based on an existing schema, since users there must be able to add new annotations
to the system.

An example for more elaborate user interface enhancements are mechanisms for
suggesting appropriate annotations to users. This can be realized syntactically by com-
paring user inputs to existing labels (e.g. in the form of autocompletion). On the other
hand, semantic structure such as the specification of property domains can be exploited
as well. For example, when editing a page onSemWiki2006, the classification of this
article as aworkshopmight be evaluated by suggesting the propertiesorganized byand
paper deadlineto the user.

5 Implementation

5.1 Ontology import

Our implementation of the ontology import is based on the Semantic Mediawiki exten-
sion to the Mediawiki5 software. For importing the ontology we used the RDF API for
PHP package RAP6. RAP is a software package for parsing, searching, manipulating,
serializing, and serving RDF models.

The ontology import extension loads an ontology using RAP. Each statement in the
ontology is checked for two criteria. First, it is checked whether the statement can be
represented within the wiki. As we have seen in Sect. 3.1, we primarily regard the as-
sertional information with the ontology, whereas complex class description will not be
imported to the wiki. Second, it is checked if the statement already known to the wiki.
If so, importing it is obviously unnecessary. The wiki then presents a list of all state-
ments that passed both checks to the user, and allows her to choose which statements
to import. For statements with subjects yet unknown to the wiki, the import will create
articles, categories, relations, and attributes as appropriate. The text created to capture
relations between articles is still very crude and recognizable as being machine created.
In the future we imagine sophisticated text generation techniques [6] to augment this
functionality. The name of a page is derived from the entity’s label, or, if none exists,
from the local part of the qualified name [7] of the entity. The comment is used as an
initial text for the page, besides the generated text mentioned before.

Although the extension was first designed solely to allow the initial set-up of a wiki
with an ontology, it also allows to upload ontologies at a later stage. This would allow
to continuously add data from an ontology to a wiki, especially since the wiki is able to
detect which parts of the ontology are missing.

5 http://mediawiki.org
6 http://www.wiwiss.fu-berlin.de/suhl/bizer/rdfapi/

24

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

In order to keep the ontology import simple, we refrained from using inferencing
and mapping techniques on the ontology to be imported. We only take into account
the basic relations described in table 1, and further only those explicitly stated in the
ontology. As the wiki can be linked to any external ontology, inferencing can be part
of the later stage as described in the next section and the example below. It is also
possible to materialize derived statements within the ontology, or to create materialized
mappings, prior to the import, if the wiki should represent this knowledge explicitly.

The implementation of the ontology import is finished and is part of Semantic Me-
diawiki in the current version.7 As an ontology import potentially leads to a big number
of changes, access to this feature is controlled via Mediawiki’s user rights management
system.

5.2 KAON2 integration

In order to reason with the ontology, we choose the KAON2 ontology management
infrastructure [12], which is written in Java. In order to employ it in the PHP-based
MediaWiki, we hooked KAON2 to a simple, Java-based server – Jetty8 – and defined a
simple ad hoc protocol to expose the required features and test the functionality. We will
consider DIG [4] as a possible protocol, but DIG does not yet allow for SWRL-based
extensions (which are possible with the current architecture), and it is also unclear how
well DIG would scale in our example. Semantic MediaWiki uses thecurl PHP extension
in order to communicate via HTTP to the KAON2 server. The results are then integrated
into the output of the page.

The separation of the reasoner and the wiki engine on possibly different machines,
and the loose coupling via HTTP offer several advantages. First, we do not need to reim-
plement an OWL reasoner in PHP, which would be a highly non-trivial task, but instead
we can rely on a mature inferencing engine that is based on sound and complete algo-
rithms. Second, with a well-defined protocol it would be possible to plug in different
reasoners if required. Third, a reasoner may require significant resources (both in terms
of processing and memory) which could slow down the wiki considerably. By distribut-
ing the tasks to different machines we allow the wiki to remain responsive regardless of
the computations required for reasoning. We consider asynchronous calls to a reason-
ing service as a possibility to combine possibly expensive tasks with a responsive user
interface.

Right now, there is a first proof-of-concept implementation of the KAON2 integra-
tion, but a more mature prototype is planned for the near future.

5.3 Example

In order to exemplify the workflow in our implementation, we consider a possible se-
mantic wiki about theSemWiki2006workshop. Instead of creating a new ontology for
the workshop, the wiki administrator decides to reuse the ontology for the semantic web
research community, SWRC [26]. The SWRC contains numerous terms that may serve

7 http://sf.net/projects/SeMediaWiki
8 http://jetty.mortbay.org

25

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 1.Sequence diagram of how the SMW extension cooperates with the reasoner

as an initial base for the use case, including concepts such asWorkshop, Article, and
Person, and properties such asorganiser or chair of, member of PC, andat event.9

The wiki administrator imports the SWRC ontology to have the initial relations and
categories set up appropriately. Now she can start to populate the wiki manually, e.g.
to add pages for the members of the programme committee. Assume that the accepted
papers are already available in a machine readable format through the conference man-
agement system. In this case, it would be possible to export this data to an RDF docu-
ment that reuses the SWRC ontology. Depending on the available format of the data this
might require some simple conversion or mapping. However, if a suitable conversion
has been implemented once, it can easily be reused for future events. The RDF version
of the accepted papers can now be imported easily into the wiki to kick-start the wiki
with existing ontological data. We consider it to be far easier to augment existing pages
than to start from an empty wiki.

Now the wiki is set up and the wiki administrator sends its URL to interested parties.
Workshop participants are encouraged to enhance the text in the wiki (as the automati-
cally generated one does sound quite awkward as of now), or to add further details and
references. One of the presenters may decide to add a link to his supervisor, typing it
appropriately with a relationsupervised bywhich, for the sake of the example, we as-
sume to be part of SWRC. After this, he creates a new article about his supervisor with
a few sentences and a link to the homepage – but without stating that the supervisor is
indeed aPerson.

But when the edit is saved, the automatic classification mechanism automatically
adds the supervisor to the categoryPerson, since this can be inferred from the ontologi-
cal definition of the range of the propertysupervised by. After saving, the article on the
author’s supervisor would indeed state that it is a person, so that other users can find the
article when browsing the according category page.

9 For readability, we omit namespaces and camel case capitalization.

26

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

More complicated description could be added easily to the ontology. Imagine the
wiki administrator adding the classGood Paperas one that isendorsed bymany, or one
that iscited bymany other papers. The system then could automatically annotate “good
papers” based on the semantic description of the article about the respective paper.

Also, inconsistencies in the wiki knowledge base could be detected by the reasoner:
if, for example, we know that only aProfessormay be a supervisor, categorizing a
supervising person as aPhD-Studentcan be recognized as being inconsistent with the
given knowledge base, and the user will be warned about this. Typically, this supports
users in recognizing misconceptions about the intended usage of some relation. In the
given example, another relationtutored bymight be appropriate. Based on a built-in
suggestion mechanism, the system can assist the user to find such relations without
studying the background ontology.

6 Related work

Since the introduction ofPlatypus Wiki[9] in 2004, a number of semantic wikis have
been developed. The focus of early systems such as Platypus or theRhizome Wiki[24]
was to provide capabilities for editing RDF content within a wiki environment. Due to
the typical splitting of wiki source and RDF, importing data into these ontologies would
be possible, whereas advanced features such as consistency checking and classification
are mostly out of scope. The main reason is that RDF is treated as a freely edited data
format without a semantic relationship to the wiki’s content.

More recently, a number of new semantic wikis have been introduced. Since many
of these systems are under active development, their exact capabilities and features are
still evolving while this paper is written. Some of these systems, such asIkeWiki [22],
adhere to the strict separation of semantic content and wiki text. In contrast, some wikis
integrate semantic annotations into the wiki source code, as it is done inWikSAR[1, 2],
andSemantic MediaWiki[27]. Finally, some wiki systems feature a WYSIWYG inter-
face, that allows users to edit content without editing wiki markup. The only semantic
wiki of this type that we are aware of isSweetWiki10 which is still in prototype stage.

Only very few semantic wikis provide any support for inferencing or ontology im-
port. The most advanced system in this respect currently seems to be IkeWiki, which
allows users to import data from external ontologies and exploits schema data to provide
editing support. The employed ontology language by default is (a subset of) OWL, and
the system uses a reasoning engine in the back. To the best of the authors’ knowledge,
IkeWiki does not employ a complete OWL reasoner, but it provides partial reasoning
support to structure wiki content and to browse data.

IkeWiki differs from our system in various ways. First of all, IkeWiki emphasizes
the use of external ontologies much more than Semantic MediaWiki. The wiki can
be initialized with multiple ontologies, and users choose annotation elements from the
according namespaces. In contrast, Semantic MediaWiki uses external ontologies only
for RDF export, and users work with internal identifiers. These identifiers might be
equal to the abbreviated URIs in an external ontology, but it is also possible to choose

10 http://wiki.ontoworld.org/wiki/SweetWiki

27

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

more human-readable names, e.g. on a wiki that is run in German instead of English.11

On the other hand, IkeWiki provides user-friendly special purpose interfaces for editing
annotations, the implementation of which is facilitated by the wiki’s separation of RDF
and text.

IkeWiki’s stronger reference to existing ontologies implies further conceptual dif-
ferences. For instance, ontological concepts in IkeWiki must be declared or imported
before usage. In Semantic MediaWiki, many annotations can be used without prior
declaration – necessary URIs are generated from the URL of the wiki system. Declar-
ing references to external ontologies is an added feature that is not enabled by default,
since we consider it as problematic in public wikis. In particular, free access to elements
from the RDFS and OWL vocabulary enables users to generate OWL Full ontologies
and logical inconsistencies, which is an interesting combination since one cannot gen-
erally detect inconsistencies in OWL Full automatically. On the other hand, an even
tighter integration ofselectedontologies can be an interesting feature that is planned
for Semantic MediaWiki as well.

Other than IkeWiki, we are only aware ofKaukoluWiki12 as another wiki system
that features ontology import and inferencing. There, the primary ontology language is
RDFS. Various related features are planned or currently implemented, but we are not
certain about the current status and integration of reasoning support.

Finally, Semantic MediaWiki appears to be the only wiki with extended support for
XML Schema (XSD) datatype annotations. The current implementation allows users to
provide data values in various syntactic forms, transforms values into XSD conformant
representations, and incorporates units of measurement into the RDF export.

7 Conclusions

We have developed and implemented a semantic wiki that meets several requirements:

– it refers to existing ontological vocabularies,
– it incorporates schema information and constraints from external ontologies,
– it exports data in a standard ontology language,
– it imports data from external ontologies, so that it is represented in and editable

through the wiki.

In order to meet these requirements, we enabled the wiki to test its knowledge base
for inconsistent facts and to classify articles automatically. We also showed how the
ontological knowledge could be used for enhancing the user interface. In order to design
the system, we have taken results from research in the field of scalable reasoning over
web ontologies into account and geared the system towards a fast and interactive user
experience.

Various tasks still are left open for future work. Better natural language generation
techniques [6] would considerably improve the ontology import function. The incon-
sistency check right now only tells us that the ontology is inconsistent, but not in what

11 Semantic MediaWiki supports easy internationalization and is available in various languages.
12 http://kaukoluwiki.opendfki.de

28

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

way and how to resolve the inconsistency (or even offer automatic correction capabili-
ties) [11, 21, 16]. It would also be interesting to synchronize a wiki knowledge base with
a dynamic ontology outside the wiki, i.e. a continuous import from an ontology. Finally,
although we have presented some ideas on how the ontological background knowledge
can be reused to enhance the user experience, we could not yet test or properly evaluate
how users interact with such a system. Although we are positive that it will be of great
help to the user, there are still some pitfalls: frequent inconsistencies or inexplicable
automatic classification could lead to frustration about the “stubborn” system.

The paper has also shown that we can use ontologies for both exporting and import-
ing knowledge from and to a wiki. Although the exchange format is far from being as
complete or even useful as other wiki exchange syntaxes, it has the advantage of being
based solely on the W3C standards RDF for data exchange and OWL for the vocabulary,
and thus may not only interact with other wikis, but also with the ever growing set of
ontology-based tools. The inconsistency check and automatic classification presented
in this paper are a mere example of this.

Whereas previous work on Semantic Mediawiki [27] has presented a way to turn
wikis, and especially the Wikipedia, into a major foundation of the Semantic Web [5],
in this paper we propose the inverse approach: reusing Semantic Web resources for a
wiki. These two technologies together allow to integrate wikis fully into the Semantic
Web idea.

Acknowledgments

Research reported in this paper has been partially financed by the European Union in
the IST project SEKT (IST-2003-506826),http://www.sekt-project.com, and by
the German BMBF project “SmartWeb.” The views expressed in this paper are those
of the authors and not necessarily those of the projects or their institute as a whole. We
would like to thank our colleagues for fruitful discussions.

References

1. D. Aumüller. Semantic authoring and retrieval in a wiki (WikSAR). InDemo Session at the
ESWC 2005, May 2005.

2. D. Aumüller and S. Auer. Towards a semantic wiki experience – desktop integration and
interactivity in WikSAR. InProc. of 1st WS on Semantic Desktop, Galway, Ireland, 2005.

3. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. InProc. 19th Int. Joint Conf.
on Artificial Intelligence (IJCAI), pages 364–369, 2005.

4. S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and S. Tessaris. A proposal for a description
logic interface. InProc. of the 1999 Description Logic Workshop (DL’99), pages 33–36,
1999. CEUR Workshop Proceedingshttp://ceur-ws.org/Vol-22/.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.Scientific American, (5),
2001.

6. K. Bontcheva. Generating tailored textual summaries from ontologies. In A. Gómez-Pérez
and J. Euzenat, editors,2nd European Semantic Web Conference, ESWC 2005, volume 3532
of LNCS, pages 241–256, Heraklion, Crete, Greece, May 2005. Springer.

29

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

7. T. Bray, D. Hollander, and A. Layman. Namespaces in XML. W3c recommendation, World
Wide Web Consortium, January 1999.

8. D. Brickley and L. Miller. FOAF vocabulary specification. Namespace Document 27 July
2005 (’Pages about Things’ Edition).

9. S. E. Campanini, P. Castagna, and R. Tazzoli. Platypus wiki: a semantic wiki wiki web.
In Semantic Web Applications and Perspectives, Proceedings of 1st Italian Semantic Web
Workshop, Dec 2004.

10. W. Cunningham and B. Leuf.The Wiki Way. Quick Collaboration on the Web. Addison-
Wesley, 2001.

11. P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A framework for
handling inconsistency in changing ontologies. In Y. Gil, E. Motta, V. R. Benjamins, and
M. A. Musen, editors,Proceedings of the Fourth International Semantic Web Conference
(ISWC2005), volume 3729 ofLNCS, pages 353–367. Springer, November 2005.

12. U. Hustadt, B. Motik, and U. Sattler. ReducingSHIQ− description logic to disjunctive
datalog programs. In D. Dubois, C. Welty, and M.-A. Williams, editors,Proceedings of the
KR2004, pages 152–162. AAAI Press, 2004.

13. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive de-
scription logics. InProc. 19th IJCAI, pages 466–471, 2005.

14. A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web ontologies.Interna-
tional Journal on Semantic Web and Information Systems, 1(1), 2004.

15. M. Krötzsch, D. Vranděcić, and M. Völkel. Wikipedia and the Semantic Web – the missing
links. In Proc. of the 1st Int. Wikimedia Conf., Wikimania, Aug 2005.

16. S. J. Lam, D. Sleeman, and W. Vasconcelos. Retax++: a tool for browsing and revising
ontologies. InProc. of ISWC 2005 Demo Session, Galway, Ireland, November 2005.

17. B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Universität Karlsruhe (TH), Germany, 2005.

18. B. Motik and U. Sattler. Practical DL reasoning over large ABoxes with KAON2, 2006.
available athttp://kaon2.semanticweb.org/.

19. N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, and M. A. Musen. Creating
semantic web contents with Protégé-2000.IEEE Intelligent Systems, 16(2):60–71, 2001.

20. E. Oren. Semperwiki: a semantic personal wiki. InProc. of 1st WS on The Semantic Desktop,
Galway, Ireland, 2005.

21. B. Parsia, E. Sirin, and A. Kalyanpur. Debuging OWL ontologies. InProc. of the 14th World
Wide Web Conference (WWW2005), Chiba, Japan, May 2005.

22. S. Schaffert, A. Gruber, and R. Westenthaler. A semantic wiki for collaborative knowledge
formation. InSemantics 2005. Trauner Verlag, 2005.

23. M. K. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide, 2004.
W3C Recommendation.

24. A. Souzis. Building a semantic wiki.IEEE Intelligent Systems, 20:87–91, 2005.
25. Y. Sure, J. Angele, and S. Staab. Ontoedit: Multifaceted inferencing for ontology engineer-

ing. Journal on Data Semantics, 1(1):128–152, November 2003. LNCS 2800.
26. Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. The SWRC ontology - Semantic

Web for Research Communities. In C. Bento, A. Cardoso, and G. Dias, editors,Proceedings
of the 12th Portuguese Conference on Artificial Intelligence (EPIA 2005), volume 3803 of
LNCS, pages 218 – 231, Covilha, Portugal, Dec 2005. Springer.

27. M. Völkel, M. Krötzsch, D. Vranděcić, H. Haller, and R. Studer. Semantic Wikipedia. In
Proc. of the 15th int. conf. WWW 2006, Edinburgh, Scotland, May 23-26, 2006, May 2006.

28. D. Vranděcić, H. S. Pinto, Y. Sure, and C. Tempich. The DILIGENT knowledge processes.
Journal of Knowledge Management, 9(5):85–96, Oct 2005.

29. Wikipedia. History of Wikipedia – Wikipedia, The Free Encyclopedia, 2006. Online version
of 28 March 2006.

30

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Kaukolu:
Hub of the Semantic Corporate Intranet

Malte Kiesel

DFKI GmbH, Kaiserslautern, Germany,
malte.kiesel@dfki.de

Abstract. Due to their low entry barrier, easy deployment, and simple
yet powerful features, wikis have gained popularity for agile knowledge
management in communities of almost all sizes. Semantic wikis strive
to give entered information more structure in order to allow automatic
processing of the wiki’s contents. This facilitates enhanced navigation
and search in the wiki itself as well as simple reuse of information in
external applications or for generating different views on the same infor-
mation. This makes semantic wikis especially interesting for corporate
intranet deployment, implementing the Semantic Intranet. In this paper,
we will have a look at Kaukolu, an open source semantic wiki prototype,
being deployed in a corporate intranet. External applications use infor-
mation authored in Kaukolu, effectively forming a cluster of applications
interacting and sharing data.

1 Introduction

Wikis become more and more important for managing content of corporate in-
tranets, serving as a platform for information exchange and as knowledge reposi-
tories. Typically, part of the information found in corporate intranets are simply
plain text (e.g., texts describing projects, templates for mails, brainstorming, tips
and best practices, . . .), but a major part of the content consists of structured
data such as lists relating people to projects, product feature lists, publication
lists, or simply collections of annotated web links. While simply being able to
manage all of this different content by dropping it—as text—into the wiki is
handy, a direct consequence of this is that everything in the wiki is essentially
text and therefore cannot be imported into other applications such as spread-
sheet applications, databases, or a content management system used for the
external web site. So, a lot of data duplication needs to be done, ultimativaly
resulting in unnecessary workload, outdated content, and inconsistencies in the
data presented at different places for differing audiences.

Semantic wikis try to implement a way to establish and maintain structure
of the wiki’s content using semantic web technologies in order to facilitate in-
formation reuse or, in general, to facilitate accessibility of the information to
automated means. Also, knowledge of the inner structure of the information
contained in wiki pages can be used to enhance browsing and search in the wiki.

31

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

In section 2, we give a short overview over the basic wiki ideas and explain
the shortcomings of wikis concerning structured data. In section 3, an overview
over (semantic) wiki implementations is given, some semantic wiki features are
explained, and several problems with existing semantic wikis are mentioned.
Kaukolu, our implementation of a semantic wiki, is introduced in section 4, along
with a walkthrough in section 5. In section 6, a number of possible enhancements
of Kaukolu are presented. We end with a conclusion in section 7.

2 What is a Wiki?

Wikis allow a group of people to collaboratively author information using a
tool that is easy to use. The main features a wiki provides are kept simple, but
flexible, in order to allow for using the basic features for a number of different
purposes. For example, the very basic wiki idea of editing a text page allows
both editing a document and doing a discussion. Backlinks, another standard
wiki feature, can be used for navigation, tagging, or grouping sets of pages. Basic
content format of wikis is text so import/export functionality is limited to text
formats.

Current applications of wikis range from open encyclopedias such as
Wikipedia to collaborative information spaces for both open communities such
as open source software projects (e.g., http://wiki.mozilla.org/—even software
project management software such as Trac1 feature wikis for documentation and
information exchange) and closed communities such as company intranets.

Structured Data Falls Through the Cracks

A major drawback of wikis is that they are intended only to edit and display
plain text2—content that represents structured data (e.g., tables or sets of wiki
pages using the same structure) can only be exported as text or HTML. These
formats preserve content and looks to some degree, but the information struc-
ture (i.e., explicit knowledge of what values populate what properties of what
entities) gets lost3. This is unfortunate: People who maintain, for example, their
publication list in the wiki, have to manually re-enter the same information in
other places such as the company extranet. However, duplication of information
is tedious work, often leading to inconsistencies and large amounts of outdated
information. Also, lack of data structure prevents us from running queries or
compiling statistics against the data.

Importing information into a standard wiki suffers from the inability to pro-
cess structured data, too. For example, while it is possible to import spreadsheet
data by attaching the spreadsheet file to a wiki page, this data cannot be accessed
1 http://www.edgewall.com/trac/
2 Text can get formatted, but this is for the looks only.
3 Some wikis support structured data to some degree using templates or similar fea-

tures. However, typically these are proprietary approaches that provide no interop-
erability with other applications.

32

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

or edited in the wiki. The spreadsheet’s data structure cannot be exploited and
reused. Another way to import spreadsheet data would be to export the data as
HTML in the spreadsheet application and import the HTML into the wiki. How-
ever, importing large amounts of HTML prevents the users from contributing
to the content. Even if users dare to edit the HTML code, keeping the original
spreadsheet document in sync with the changes can only be done manually.

This means that existing structures effectively cannot be maintained inside
the wiki. Since structured data gets “flattened” on import, users may end up
with an unstructured data repository that is difficult to manage and difficult to
keep in sync with the corresponding information outside of the wiki.

How to solve this issue?– A naive solution for importing spreadsheet data, for
example, would be to import comma–separated values4 (CSV) into the wiki. This
would at least bring one benefit of wikis, namely collaborative editing, together
with structured data. However, readability and flexibility of CSV is very low.
Anybody trying to introduce a new property of an item (anybody who would
try to add a new column) would have to reformat all data that has been added
so far. Also, anybody depending on the old CSV structure would have to get
notified.

The Semantic Wiki Idea

Semantic wikis try to overcome the problem stated above by combining semantic
web standards such as RDF/S or OWL with the wiki paradigm. One idea is to
annotate structure in the wiki by providing metadata for existing features such
as links and pages. On the other hand, one can strive to completely represent
the wiki content using instances of the respective ontology language.

3 An Overview over Several Wikis

In [9], an overview of semantic wikis and personal wikis is given, resulting in the
description of SemperWiki, a semantic desktop wiki.

In most traditional wikis, the idea of metadata typically only appears in a
very technical way. For example, in JSPWiki5, metadata is added directly into
the wiki text using special tags, and mostly serves the purpose of implementing
access control. In SnipSnap6, labels may get attached to wiki pages, serving
mainly as a categorization scheme.

The semantic wiki Platypus7 adds RDF(S) and OWL metadata to wiki pages.
Metadata has to be entered separately from wiki text and relates a wiki page to
another resource; thus, metadata can be transformed into a list of related pages
that can be shown along with the actual wiki page.

4 http://en.wikipedia.org/wiki/Comma-separated values
5 http://www.jspwiki.org/
6 http://snipsnap.org/
7 http://platypuswiki.sourceforge.net/

33

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

The Semantic MediaWiki8 [7] is an extension of MediaWiki9, the software
used by Wikipedia. Again, metadata associated to a wiki page may point to other
resources, but here, literals are allowed, too. Also, metadata is entered directly
into the wiki text, and does not have to adhere to a schema. A nice feature of
this implementation is its support for multiple datatypes such as coordinates
and temperatures, along with conversion between different unit scales.

Rhizome10 [14] builds on a framework that adapts techniques such as XSLT
and XUpdate to RDF. In essence, RDF is used throughout the framework for
almost everything, and RxSLT (an XSLT variant adapted for RDF) is used for
transforming queries’ results to HTML or other output formats. Page metadata
has to be entered separately from the page. While the approach is very interesting
from a technical point of view, the current implementation requires a lot practice
with the underlying techniques.

IkeWiki11 [13] is a rather new wiki supporting OWL ontologies. It supports
inferencing when typing links and relies on JavaScript–based features for sup-
porting the user which helps quite a lot when adding semantic information.

OpenRecord12 is a kind of database/spreadsheet wiki. It focuses on enabling
the user to enter structured data using tables. It heavily uses JavaScript, pro-
viding almost the feeling of a standalone application. However, currently it is in
alpha stage only.

Problems Found in Existing Semantic Wikis

Existing (semantic) wikis lack in some areas:

Interoperability: While one of the main points of semantic web standards
is interoperability, there seems to be no semantic wiki that allows import of
RDF data. Some wikis allow usage of ontologies (in OWL or RDFS language),
but integration into the wiki concepts seems to be amendable. For example,
ontologies loaded typically do not show up in the wiki since they are loaded into
a separate repository. Thus, ontologies are deemed to remain static and cannot
be edited by users of the wiki.

Annotation complexity: In existing semantic wikis, RDF is mainly used for
annotations: RDF supplies semantic information that describes existing human–
readable features. Since the basic blocks of wikis are pages and links between
them, mapping a wiki to RDF can be done by using pages as representatives of
RDF resources, with links between wiki pages denoting relations between RDF
resources. This approach is typically implemented by enabling the user to attach
RDF triples to wiki pages13, but setting the subject of each triple of the page
8 http://semediawiki.sourceforge.net/
9 http://mediawiki.sourceforge.net/

10 http://rx4rdf.liminalzone.org/Rhizome
11 http://ikewiki.salzburgresearch.at/
12 http://openrecord.org/
13 Often in terms of selecting types for links to other pages

34

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

to the page’s URI14. It follows that when using RDFS, wiki pages must be both
of the type wiki:page and of the type the resource the wiki page is supposed to
describe. This has two drawbacks: First, from a knowledge engineer’s point of
view, existence of an entity that is both a text (a wiki page) and, for example, a
person, is not desirable. Second, while the approach can be handy for generating
RDF data of “shallow” ontologies with few classes and many relations15, we think
that it reaches its limits as soon as more elaborate ontologies and structures are
used. For example, in Figure 1 the RDF structure of a foaf:person is depicted. In
semantic wikis that identify an RDF resource with a wiki page, one wiki page of
the type foaf:person can be used to model this data. However, if we try to model
the data shown in Figure 2 (a bibtex entry represented in a format similar to
the format used by the bibtex2rdf 16 converter), we would need four wiki pages
(one wiki page per RDF resource) for just one bibtex entry.

There are other cases that make the problem even more obvious. For example,
imagine a large table that lists 100 products along with a short description and
price. In order to express this in a semantic wiki that identifies a page with a
resource, one gets forced to create 100 wiki pages, one for each row of the table,
both cluttering title index and recent changes pages.

In general, we believe that imposing a structure on wiki contents due to
technical reasons is against the wiki way. Users should be free to use whatever
page structure they want. Structured data, as is RDF, is only another view on
the wiki content.

Paul : foaf:Person

+foaf:name = Paul

+foaf:mbox = mailto:paul@mail.net

+foaf:homepage = http://paul.home.page/

+foaf:depiction = http://paul.home.page/paul.png

Fig. 1. A foaf:person.

Smooth migration: While some existing semantic wikis allow addition of se-
mantic features to existing content (for example, by typing previously untyped
links in the wiki), no wiki seems to provide features to assist the user when
extracting further semantic features from (imported) plain text.

14 The point is that in this approach triples are bound to pages because of their subject
URI. It does not really matter whether this URI is the URL the wiki page can be
browsed at, a separate “wiki page concept URI”, or an arbitrary URI.

15 For some applications such as Gnowsis [12], this approach is followed by our wiki
implementation, too [6].

16 http://www.l3s.de/∼siberski/bibtex2rdf/

35

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Paul04 : bt:InProceedings

+dc:title = The Internet Considered Harmful

+bt:pages = 30-45

Paul_person : bt:Person

+vc:FN = Paul Miller

Paul_fullname : vc:Name

+vc:Given = Paul

+vc:Family = Miller

Proc04 : bt:Proceedings

+dc:date = 2004

+dc:title = WISKY 2004

dc:creator

vc:N

dc:isPartOf

Fig. 2. A bibtex RDF entry.

Queries: The only means of querying semantic information is either very simple
queries built with a user interface (such as “Show a list of all publications to me”)
or complex queries entered manually in a query language such as SPARQL [10].

4 Why Kaukolu is Different

Kaukolu17, our implementation of a semantic wiki, builds on JSPWiki18 and
Sesame 219. It differs in several aspects from the existing semantic wikis.

– no restrictions are imposed on RDF triples attached to a page (triple’s sub-
jects are not fixed)

– arbitrary RDF(S) files can be imported
– aliases can be defined for resources and predicates
– autocompletion supports the user when formalizing content

We currently use Kaukolu internally in our department. An evaluation in
another company will take place this year.

No Restrictions on RDF Triples

Kaukolu allows to formulate arbitrary RDF on any wiki page using a slightly
extended wiki syntax. Subjects of RDF triples are not required to represent
the URI of the page the triple is located at. This solves the issues explained in
section 3 and allows for more complex RDF data.
17 Available at http://kaukoluwiki.opendfki.de/ including sources
18 http://www.jspwiki.org/
19 http://www.openrdf.org/

36

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

RDF(S) Import and Export

Being able to associate arbitrary RDF with a wiki page not only works when
formulating RDF but also allows to import RDF. In fact, since RDF Schema
is also represented in RDF, one can even import RDFS ontologies to Kaukolu
using this method. Imported RDFS ontologies can be used in various ways within
Kaukolu, we will explain this later. A direct benefit of RDFS ontologies being
stored on wiki pages is that this way users are able to edit and extend the
ontologies used by the wiki in a straightforward way, using all features a wiki
provides (versioning, collaborative authoring, viewing diffs, . . .). However, one
has to say that currently changing RDFS using this approach is quite difficult
as one has to directly work on RDFS without any tool support.

Aliases Replacing namespace:localname URIs

In contrast to most existing semantic wikis, users of Kaukolu are not required
to use localnames, labels, or namespaces of RDFS properties in order to express
RDF triples using these predicates. For example, typically the user has to write
something like (this) dc:author “Author Name” if he wants to express that the
current wiki page has a Dublin Core author property. In Kaukolu, we allow an
intermediate step: every RDF instance or RDFS property may be associated
to arbitrary strings (aliases) that can be used instead of the URI/label of the
respective property or instance. In Figure 3, aliases are defined using the hasSub-
jectURI/hasPredicateURI keyword. This not only relieves the user from having
to remember namespaces or localnames but also facilitates internationalization
by usage of ontology metainformation [3].

Autocompletion for Both Semantic and Non–Semantic Content

Of course, even with wiki syntax and aliases for properties and instances, enter-
ing RDF triples is a tedious task. Without further support, the user would need
to keep the documentation of the ontologies always at hand, typing mistakes
would introduce severe errors, and the user would have to remember the URIs
of all RDF instances created in the wiki. In Kaukolu, there is ontology–based
autocompletion support, which proposes aliases based on RDFS range and do-
mains. For example, when typing Paul knows, with Paul being a foaf:person,
and knows being associated to foaf:knows, the system automatically proposes
a list of foaf:persons defined in the wiki to complete the RDF triple, as only
foaf:persons are allowed as range of foaf:knows, even without any prefix typed.
If a prefix has been typed already, it is used to narrow down the list of sugges-
tions. Autocompletion works for predicates, too. In case no alias is found in the
typed text, Kaukolu assumes that the user does not intend to write triples, and
simply proposes names of wiki pages as autocompletion suggestions, based on
the prefix already typed. So if you type “InfoOn”, and there are “InfoOnPaul”
and “InfoOnSarah” pages in the wiki, those both page names are suggested.

37

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

All Standard Wiki Features are Implemented

Most other semantic wikis have been rewritten from scratch and therefore miss
several standard wiki features such as file attachments, access control, plugin
support, or support for multiple backends. Kaukolu is based on JSPWiki20, an
established wiki that is quite feature–complete.

5 Kaukolu in Practice

In the following, we will demonstrate some of Kaukolu’s features. Paul Miller
will import an ontology describing bibtex entries into Kaukolu, and add a new
publication item to a wiki page (ontology–driven autocompletion will help here).
Then, Paul will export the bibtex RDF generated into an external application
RDFHomepage [5] which generates an HTML page containing a publication list.

Ontology Import: In Figure 3, we see a wiki page holding the bibtex RDFS
ontology used for our publication list. Any RDFS ontologies can get imported.
On import, they will be converted to RDF wiki syntax which is similar to N3 [1].
Ontologies can be created using ontology editors such as Protégé-2000 [8]. Note
that one can now collaboratively edit the ontology within Kaukolu. Export to
RDFS is also possible using the “View related RDF” button to the lower right.
Updating the ontology can be done either directly in the wiki or by re–importing
the ontology.

Fig. 3. The wiki page holding the bibtex RDFS ontology.

Add a Publication Entry: In Figure 4, we see a user adding a publication
entry to his wiki page. Since hasType (corresponding to rdf:type) implies that

38

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 4. Ontology–based autocompletion in action.

the triple’s object will be of type rdfs:Class, only instances of rdfs:Class are
displayed in the autocompletion suggestion box.

The complete page describing Paul’s publication item is shown in Figure 5.
Note that one can use standard wiki markup along with the RDF extensions (a
bullet list is used).

Fig. 5. The complete bibtex item.

Export Publication List to External Application: In Figure 6, we see
an HTML page generated by RDFHomepage using the RDF formulated on the
user’s wiki page. Note that the page generated is intended for external audiences
and cannot be edited. The RDF created in Kaukolu, a Java–based application,
is processed by RDFHomepage, a PHP–based application.

20 http://www.jspwiki.org/

39

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 6. The publications page as generated by RDFHomepage.

Further Applications

Kaukolu can be used for different ontologies, too. For example, RDFHomepage
not only generates a publication list, but also uses information contained in an
organizational repository (formulated in RDF/S) for generating a list of projects
the respective person using RDFHomepage participates in. Kaukolu allows to
collaboratively maintain the organizational repository which up to now has been
maintained centrally in our department.

6 Future Work

Limitations of Kaukolu

Kaukolu currently does not provide means to generate a number of RDF con-
structs. Most notably, it cannot deal with RDF containers such as bags, se-
quences, and alternative values yet. While this is a drawback when authoring or
importing RDF, expressivity is not touched by leaving these features away since
these constructs can be substituted by RDF lists and multiple–valued proper-
ties in most cases. Alternatively, Kaukolu’s wiki syntax for creating RDF triples
could be extended to incorporate handling of containers.

Another limitation of Kaukolu is its inability of generating blank nodes. On
import, any blank nodes may get assigned a random and unique URI. However,
Kaukolu currently never exports blank nodes.

Planned Features

We have identified several ways in which Kaukolu may be improved.

Use of RDF metadata within Kaukolu: While currently the main reason
for generating RDF is its usage in external applications, Kaukolu can use RDF
data for navigation: If RDF data is attached to a page, it can be shown in a
navigation sidebar. We are aware that this is only a very basic feature. Further
possibilities for using annotations within the wiki would be to use them for
search or feature a reverse translation of RDF to wiki markup or HTML directly
for display which would allow to create customized views on formalized wiki

40

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

content (“Show a list of all persons working in project X here” or “Show a
list of all properties of software X here”). Previous work on this topic includes
Fresnel [2] and Haystack [11].

Proposal of RDF metadata from natural texts: We plan to use the
SProUT natural language processing module [4] in Kaukolu. This will allow
to generate RDF from natural text and partly eliminate the dependence on for-
mulating triples directly. Also, this will be a great feature for switching from
a standard wiki to Kaukolu since existing texts can get mined for RDF data
then automatically. While we do not expect the extracted data to be perfect,
we believe that it will serve as a start. SProUT has been used in the SmartWeb
project21 for extracting RDF instances from natural texts in the sports domain.

Creation of RDFS instances: Creating instances of RDFS classes by entering
the corresponding RDF triples is quite time–consuming. There should be a more
comfortable way to create new instances. A lightweight way would be to create
default triples according to the ontology and to let the user fill in object values.

Better embedding of RDF triples: Currently, any RDF expressed in
Kaukolu must be part of a wiki page’s text and therefore gets displayed when
the page gets rendered. Since Kaukolu allows aliases for subjects, predicates,
and properties to get embedded in natural text (as in “PaulMiller came to know
SarahMiller in 2005”), there is no absolute need of separating the parts of the
text that represent RDF from the remaining text. However, in practice embed-
ding triples often leads to awkward sentences. A more flexible way of embedding
RDF–generating content into wiki pages seems desirable. In the future, we will
implement a feature that allows to separate RDF–generating statements from
normal text. Features to generate these statements as well as features to keep
them in sync with normal text will be added.

7 Conclusion

In this paper, we gave an overview over the ideas of (semantic) wikis and imple-
mentations that are available. Our semantic wiki prototype Kaukolu addresses
some of the shortcomings of existing semantic wikis and is intended for in-
tranet usage. Its main features are its ability to import and export RDF and its
ontology–supported autocompletion feature which relieves users from having to
know the ontologies used letter by letter. We believe that export and import of
structured data are essential features for a semantic web application. A demon-
stration of theses features was given, using a publication list as an example for
structured content which gets formulated in Kaukolu and used in a separate
application, illustrating Kaukolu’s export functionality. Finally, we discuss some
issues in Kaukolu, along with ideas how to address them.

21 http://www.smartweb-project.de/

41

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

8 Acknowledgments

This work has been supported in part by the NEPOMUK project, which is
funded by the IST Programme of the European Union under grant FP6-027705.

References

1. Berners-Lee, T. Getting into RDF & Semantic Web using N3, 2000.
2. Bizer, C., Lee, R., and Pietriga, E. Fresnel - Display Vocabulary for RDF,

2005.
3. Buitelaar, P., Sintek, M., and Kiesel, M. Integrated Representation of Do-

main Knowledge and Multilingual, Multimedia Content Features for Cross-Lingual,
Cross-Media Semantic Web Applications. In Proceedings of the ISWC 2005 Work-
shop on Knowledge Markup and Semantic Annotation (2005).

4. Drozdzynski, W., Krieger, H.-U., Piskorski, J., Schäfer, U., and Xu, F.
Shallow processing with unification and typed feature structures — foundations
and applications. Künstliche Intelligenz 1 (2004), 17–23.

5. Grimnes, G., Schwarz, S., and Sauermann, L. RDFHomepage or Finally, a
Use For Your FOAF File. In Proceedings of Semantic Web Scripting Workshop at
ESWC06 (2006). http://rdfhomepage.opendfki.de/.

6. Kiesel, M., and Sauermann, L. Towards Semantic Desktop Wikis. UPGRADE
special issue on ”The Semantic Web” (2005).

7. Krötzsch, M., Vrandecic, D., and Völkel, M. Wikipedia and
the Semantic Web — The Missing Links. In Proceedings of Wiki-
mania 2005 (JUL 2005), Wikimedia Foundation. http://www.aifb.uni-
karlsruhe.de/WBS/mak/pub/wikimania.pdf.

8. Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., and
Musen, M. A. Creating Semantic Web contents with protege-2000. IEEE Intel-
ligent Systems 16, 2 (2001), 60–71.

9. Oren, E. SemperWiki: A Semantic Personal Wiki. In Proceedings of the 1st
Semantic Desktop Workshop at the ISWC2005 (2005).

10. Prud’Hommeaux, E., and Seaborne, A. SPARQL query language for RDF.
World Wide Web Consortium, Working Draft WD-rdf-sparql-query-20060220, Feb.
2006.

11. Quan, D., Huynh, D., and Karger, D. R. Haystack: A platform for authoring
end user semantic web applications. In International Semantic Web Conference
(2003), pp. 738–753.

12. Sauermann, L. Gnowsis semantic desktop iswc2004 demo. In Proceedings of the
International Semantic Web Conference 2004 (2004).

13. Schaffert, S., Gruber, A., and Westenthaler, R. A Semantic Wiki for
Collaborative Knowledge Formation. In Semantics (2005).

14. Souzis, A. Rhizome Position Paper, 2004.
http://rx4rdf.liminalzone.org/FOAFPaper.

42

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Creating and using Semantic Web information
with Makna

Karsten Dello, Elena Paslaru Bontas Simperl, and Robert Tolksdorf

Freie Universität Berlin, Institut für Informatik,
AG Netzbasierte Informationssysteme, Takustr. 9, D-14195 Berlin, Germany

{dello,paslaru,tolk}@inf.fu-berlin.de
http://www.ag-nbi.de/

Abstract. Combining Wiki and Semantic Web technologies is consid-
ered by many members of the two communities as a promising alternative
to current approaches for collaboratively creating and using information
on the Web. The user-friendliness of the former as regarding multi-site
content generation and the power of semantic technologies as w.r.t. or-
ganizing and retrieving knowledge are likely to complement one another
towards a new generation of Web-based content management systems.
Our system Makna (stands for “knowledge” in Indonesian) elaborates
on this ideas by extending the Wiki engine JSPWiki with generic, easy-
to-use ontology-based components for authoring, querying and browsing
Semantic Web information.

1 Introduction

Combining Wiki and Semantic Web technologies is considered by many mem-
bers of the two communities as a promising alternative to current approaches for
collaboratively creating and retrieving information on the Web. The success of
the former is primarily due to their simplicity and user-friendliness; a Wiki is a
hypermedia system consisting of a collection of interconnected Web documents,
which can be accessed, revised and extended by arbitrary parties with the help of
a simplified hypertext syntax. However, while Wiki systems are targeted at col-
laborative authoring, they still need means to organize and retrieve the created
content. Though its importance is widely acknowledged among Wiki solution
providers, this issue is marginally addressed in current implementations, which
restrict to organizing Wiki articles/pages according to a manually defined (and
maintained) set of categories.

The Semantic Web provides the technological infrastructure to alleviate this
situation. RDF statements can be applied to enhance the semantics of Wiki
pages and of the links between them, while ontologies and associated reasoning
services are a valuable extension to currently employed plain topic classifications
and information retrieval capabilities. Figure 1 illustrates this idea with a simple
example: the relationship between the Wiki article introducing the American ac-
tor Humphrey Bogart and the one describing his home town New York is related
by the typed link livedIn, a property defined in a particular domain ontology.

43

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

2 Dello, Paslaru, Tolksdorf

The interconnected articles themselves are annotated with typing information,
according to which they are classified as an instance of the concept Actor and
City, respectively.

http://en.wikipedia.org/wiki/Bogart http://en.wikipedia.org/wiki/NewYork

SomeOntology:CitysomeOntology:Actor

someOntology:livedIn

Fig. 1. Typed pages and links

Complementarily the Semantic Web can utilize Wikis as support tools in
various application scenarios, the most important being probably distributed
knowledge engineering and semantic content generation. The usage of Semantic
Web technologies is currently inconceivable without a high level of IT expertise,
with the consequence that the amount of Web information available in languages
like RDF(S) and OWL is minimal compared to the dimensions of the traditional
Web. In order for the Semantic Web to overcome this technical barrier of entry
there is a need for tools which allow humans to contribute to the creation of
Semantic Web content transparently from the underlying technologies.

In this paper we elaborate on these ideas by implementing Makna, a Wiki-
based tool for distributed knowledge engineering.1 Makna extends an existing
Wiki engine (in our case the Java-based JSPWiki system)2 with generic, easy-
to-use ontology-driven components for collaboratively authoring, querying and
browsing Semantic Web information. In contrast to similar attempts for combin-
ing the two fields of research, our system explicitly focuses on the immediate and
comfortable exploitation of the semantic content, while implementing many key
features of hypermedia systems targeted at supporting distributed knowledge
engineering processes [4, 14, 18, 21].

The remainder of this paper is organized as follows. Section 2 specifies a
set of core requirements to be fulfilled by the Semantic Wiki implementation.
Building upon these we discuss the design principles and the architecture of the
Makna system in Sections 3 and 4, respectively. Details on the implementation
are presented in Section 5. We compare our solution with related approaches
in Section 6 and conclude with a summary of future research and development
directions in Section 7.

1 http://makna.ag-nbi.de
2 http://www.jspWiki.org/

44

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Creating and using Semantic Web information with Makna 3

2 Requirements analysis

A Wiki system can be understood as a collection of simplified hypertext docu-
ments which are read and edited by a community of Wiki users[5].

In relation to the rapid growth of the amount of information available within
a Wiki system, its users need means to locate the relevant content, prior to ac-
cessing, creating or modifying it in any form. This task is commonly approached
with the help of keyword-based information retrieval mechanisms. Mainstream
Wiki implementations maintain a full-text index of their contents and provide
users with the possibility of formulating unstructured queries in a simple query
interface.3

The limitations of this simplistic approach become visible when Wiki users
necessitate very specific information on a particular topic or information which
is distributed over multiple pages. These use cases can not be successfully real-
ized using keyword-based search algorithms executed on a plain set of textual
documents; in turn they require heuristics which take into account the semantics
of the underlying domain and of the links between individual Wiki contents. We
illustrate these issues by means of two simple examples in the movies domain. A
query like Who was the actor Humphrey Bogart married to? by Wikipedia
delivers—if formulated properly—a list of movies starring the actor, as well as
the Wiki article containing his biography. Though the encyclopedia contains a
page dedicated to the prominent wife of Humphrey Bogart, the actress Lauren
Bacall, this information can not be exploited without human intervention, in
the absence of machine-processable domain knowledge and of an adequate link
mechanisms between the two pages. Further on, a search for American actors
in the same information repository returns a set of Wiki entries containing actor
biographical information, but also dozens of movies or other types of articles.
In order to improve the precision of such general queries, Wiki systems need to
implement mechanisms for typing Wiki pages according to pre-defined schemes
(such as ontologies).

To summarize, typing Wiki articles and the links interrelating them by means
of ontologies enables the implementation of advanced content- and structure-
oriented retrieval facilities.

Another aspect to consider is context-based navigation. Wiki systems rapidly
tend to contain an impressive number of internal links.4 If the relation between
Wiki pages would be represented in a precise and formal way—and that is ex-
actly what Semantic Web technologies provide—the Wiki engine could provide
facilities to semantically navigate between meaningfully related resources, such
as the articles dedicated to the aforementioned actors.

Besides domain-focused search heuristics and semantic navigation, ontology-
driven technologies provide additional advantages to organizing and retrieving
3 Often users are re-directed to a page by search engines like Google who have spidered

the Wiki contents, integrating it into their own index.
4 As stated at http://stats.Wikimedia.org/DE/TablesWikipediaEN.htm the Eng-

lish Wikipedia contained 19.3 million internal links to 922.000 articles as of Novem-
ber 2005. This is a rate of approximately 21 out- and in-links per article.

45

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

4 Dello, Paslaru, Tolksdorf

knowledge in a Wiki system. If Wiki contents were classified according to an on-
tology, this could be utilized as a commonly agreed query vocabulary, enabling
users to formulate more precise and structured queries. Further on, formally rep-
resented ontologies in correlation with reasoning services are an ideal means to
operationalize various quality assurance procedures, which become indispensable
in any loosely coupled collaborative content authoring endeavor [1]. A third use
case is the automatic link computation; given a semantic classification of Wiki
articles, the system could consult the ontological content in order to automati-
cally detect links to semantically related resources. According to a recent study
by [1] the lack of adequate support for link creation and management is one of
the key usability problems encountered within Wiki systems.

The aforementioned issues correspond to well-established requirements for
so-called “forth-generation hypermedia systems”. As stated in [4, 21] advanced
Web-based hypermedia systems—including Wikis—can take benefit from imple-
menting features such as5

– typed annotated nodes
– typed attributed links
– computed links
– personalized links
– content- and structure-based search
– content- and structure-based navigation
– multiple view presentation

On the other hand, while extending Wiki technologies with semantics defi-
nitely contributes to the realization of advanced search and browse facilities, it
also imposes several additional system requirements at both functionality and
usability level. First, the system should provide a concept for the consistent
authoring and manipulation of semantic information. This issue relates to the
usage of the system ontologies, but also to the development of the ontologies
themselves. The former primarily requires means to reference ontological prim-
itives within content generation tasks. The latter, however, induces the need
for methodological and technological support for collaborative knowledge engi-
neering tasks. This non-trivial research question, recently tackled in approaches
such as [9, 14, 18] solely at methodological level, is still in its infancy in the Se-
mantic Web community. Usability requirements mainly refer to transparency
and performance issues, as semantic technologies are not necessarily popular for
seriously addressing any of them yet.

3 System design

Accounting for the results of the requirements analysis the realization of Makna
system was influenced by two categories of design decisions, which are introduced
in the remainder of this section.
5 Hypermedia systems differentiate between nodes and links. Nodes denote information

objects (e.g. documents, or document fragments) which are connected to each other
by means of links.

46

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Creating and using Semantic Web information with Makna 5

3.1 Minimally invasive Wiki extensions

The first category of design decisions has the objective to preserve the advantages
provided by conventional Wiki technology while enriching its capabilities.

The new engine should support the same usage patterns as traditional ap-
proaches. In particular this applies for the hypertext syntax employed, which
need to extended with dedicated keywords. Further on, the system should pro-
vide an easy-to-use concept for the creation and management of semantic data
[1]. This should allow Wiki users to annotate plain Wiki content in terms of
adding, deleting or modifying RDF statements. However, as our system is not
targeted at collaborative ontology engineering yet, it is not reasonable to permit
arbitrary users to perform changes at ontological level. Without an adequate
methodological support an uncontrolled ontology evolution might have consid-
erable implications on the way Wiki data is classified and subsequently retrieved
[8, 14, 17, 18, 20]. The manipulation of the employed ontologies as well as the
import of semantic instance data are therefore currently limited to a particular
group of users e.g. administrators (cf. Figure 3).

Technologically the minimal invasive character of Makna is reflected in the
decision to build upon existing Wiki systems instead of an implementation from
scratch (as for example in [2, 15, 19]). The benefits of this decision are twofold.
First re-using established implementations has clear costs and quality advantages
[7, 11]. Another motivation is related to the philosophy that “the Semantic Web
is not a separate Web but an extension of the current one.”[3]. Following this
idea it should also be possible to turn an existing Web application like a Wiki
engine into an Semantic application by plugging in the necessary extensions.

3.2 Versatile use of semantic technologies

A Semantic Wiki should provide facilities for flexibly integrate and use arbitrary
Semantic Web ontologies available on the Web. This implies the possibility to
refer to multiple ontologies at Wiki syntax level and their seamless usage in
classification, retrieval and navigation tasks.

Wiki users should be able to comfortably access available ontologies in order
to suitably annotate Wiki articles. This can be achieved by providing dedicated
components to facilitate the interaction with the ontological content (cf. Section
5).

Inference is another important point to consider. Reasoning services can be
applied on Wiki contents in order to enhance the retrieval capabilities of the
system or to exercise consistency checking in relation to specific quality assurance
procedures. However, it might be necessary to restrict this feature to a carefully
defined set of ontologies, as inferencing on arbitrary ontologies on the Web could
under circumstances lead to serious performance problems.

Complementarily to the integration of multiple Web ontologies the engine
should provide means to import and export data formalized using Semantic
Web representation languages.

47

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

6 Dello, Paslaru, Tolksdorf

Finally we consider the relations between pages which are not naturally rep-
resented as hyperlinks. This can be solved in the same way in which links between
non-existent pages can be created. If it is not required that statements are exclu-
sively formulated in the Wiki syntax the problem resolves, thus making available
RDF data representable as Wiki instance.

4 System architecture

The architecture of the Makna system is depicted in Figure 2. It consists of the
Wiki engine JSPWiki, extended with several components for the manipulation
of semantic data, and the underlying persistent storage mechanisms. We chose
JSPWiki, because it is written entirely in Java and has a clear design structure
(i.e based on the Model-View-Controller-Pattern) facilitating system extensions.
The Jena API was used as de facto standard Semantic Web framework for cre-
ating, managing and querying RDF data.

Additionally we used a relational database for the persistent storage of the
semantic model. The persistent storage of the Wiki pages and attachments can be
provided through any of the versioning storage provider modules for JSPWiki.6

JspWiki Wikipages and
Attachments-Storage
(Filesystem,Database,

CVS,SVN,...)

SemWeb
-Storage

(MySQL,PostgreSQL
or Oracle)

Jena

Semantic Wiki
Additions

Fig. 2. Makna architecture

Due to the fact that our system currently does not include any mechanisms
for collaboratively constructing ontologies, we differentiate between two types of
semantic data: the ontology data and the instance data. This distinction is simi-
lar to the common terminology in Description Logics (or OWL) and corresponds
to different ways of creating and manipulating the data within the system. On-
tologies are expected to be imported to the Wiki instance by administrators.
These can revise or extend them using external tools (such as conventional on-
tology editors). The instance data is the sum of

– the RDF statements formulated in Wiki syntax by the users

6 http://www.jspWiki.org/Wiki/PageProvider

48

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Creating and using Semantic Web information with Makna 7

– the statements manually added by the user (using assistants, see below)
– and the (external) instance data imported by the administrators

This separation is reflected in the restriction that the ontology data can be
modified solely in the administrator interface, while the instance data can be
manipulated in diverse ways in the Web interface by arbitrary users (cf. Figure
3).

Wiki Administrator

Instance
Data

Ontology
Data

Wiki User

modifies

modifies

Reasoner Inference
Model

uses

import

External
Information Provider

reads

reads

uses

Fig. 3. Separation between ontology and instance data

The administration interface is responsible for the ontology- and configuration-
related functionality:

– specify the ontology/ontologies used within the system
– import external RDF data
– define shortcuts for a more comfortable usage of ontological primitives
– configure inference engines and persistent storage systems.

The user interface embeds facilities for creating and using Semantic Web
information on the basis of the imported ontologies:

– refer to ontological primitives for annotating Wiki content or defining link
types

– formulate and execute content- and structure-based queries
– browse the Wiki contents on a content- or structure basis
– export semantically represented data as RDF or N3.

Details about the implementation of these features are discussed in the next
section.

49

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

8 Dello, Paslaru, Tolksdorf

5 Implementation

5.1 Authoring semantic content

Wiki users are able to create semantic content (in form of RDF statements
referencing pre-configured ontologies) in the classical Wiki manner. They are
provided with an extended Wiki syntax and with assistant tools simplifying the
interface to the ontologies employed. Further on, users can create, modify and
delete RDF statements associated with Wiki pages.

Extended Wiki syntax In JSPWiki’s syntax a link is represented by [<Target>]
where <Target> is either an absolute URL or another page in the Wiki.

Fig. 4. Makna syntax

We extended this syntax to [<Target>!<Term>] to support semantic link-
ing.7 This extended link element creates a semantic statement, in which the URI
of the edited page is the subject, <Term> is the predicate and <Target> is the ob-
ject. Figure 4 presents the edit-page corresponding to the Wiki article on Ingrid
7 The exclamation mark was selected because it has no other function in links in

JSPWiki syntax.

50

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Creating and using Semantic Web information with Makna 9

Bergman, which is depicted in Figure 7 below. <Term> can be an URI, but more
likely either a shortcut or a namespace:predicate combination from the resources
configured in the Wiki instance. In order to support statements with literals, the
range of <Target> was extended too. If <Target> is enclosed in hyphens, the
system recognizes it as an literal and creates the statement accordingly.

Interactive Assistants In order to support the user formulating accurate se-
mantic links in the proposed Wiki-syntax we integrated several interactive as-
sistants based AJAX[6]. We will limit our description here to those two assistants
which have been integrated into the edit-page of the Wiki: the predicate assis-
tant and the page assistant. The former guides the user in finding a predicate in
the configured ontologies. The latter assists the user in seeking for the names of
other pages in the Wiki.

Figure 5 illustrates the functionality of the predicate assistant. The user
enters the term mail and a drop down list with the matching predicates is
automatically created. After selecting a predicate from the list, the text area
below is updated with detailed information about the selected predicate.

Fig. 5. Predicate assistant

As soon as the user starts typing into the input field, an asynchronous request
is sent from the client-browser to the server in the background, which returns an
XML-document with the matching terms. These terms are compared on a lexical
basis to the natural language labels of the corresponding items (predicates and
Wiki pages, respectively).

Our system also supports statements which do not appear in the Wiki pages
themselves. This means that meta-statements can be expressed, and links be-
tween two non-existent pages and/or from external resources can be formulated.

51

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

10 Dello, Paslaru, Tolksdorf

The associated assistant provides a simple interface which allows users to access
the content of available ontologies in order to specify subjects, predicates and
objects of new statements. Figure 6 depicts this functionality: after selecting the
FOAF-ontology, the assistant updates the predicate form with the corresponding
information (top part of Figure 6); depending on these two parameters the as-
sistant further computes appropriate object resources (bottom part of the same
figure)

Consistency of the semantic model The consistency of the semantic model
can be guaranteed by our implementation. To achieve this we implemented two
functions. If a statement is submitted by the user with the syntax-external as-
sistant (cf. Figure 6) we check its validity immediately; in case the statement is
found to be invalid according to the semantic model it is rejected and the user
gets notified. The same happens if the statement is found to cause inconsisten-
cies in the model. The other function is the verification of statements which are
formulated in the Wiki syntax. After the edited page is submitted the system
extracts all semantic statements and checks if they are consistent with the se-
mantic model. If statements are found which cause inconsistencies, the user is
returned to the edit page, gets informed about the details of the problem de-
tected and is asked to correct his input. By doing so we assure that the semantic
model is always consistent, as there is no possibility to add statements that cause
inconsistencies.

This behavior is currently being refined in order to support application sce-
narios with loose consistency requirements. In conjunction to the extension of
our system towards advanced collaborative ontology engineering support (cf.
Section 7) we are examining ways to ensure local consistency on personal on-
tologies, while the global shared ontology does not have to satisfy this (sometimes
unfeasible) constraint.

5.2 Context-based presentation and navigation

When a call to a Wiki page is issued the Wiki engine extracts a subgraph of
the semantic model which contains all statements which have the current page
either as their subject or their object—no matter if they were formulated in the
Wiki syntax or elsewhere.

In Figure 7 we illustrate the Wiki article about the actress Ingrid Bergman
in a fictive Makna movie instance. The navigation block on the right side of
the screen consists of two parts: the summary of the semantic relations of the
current page (on the top) and the list of the prepared search requests for related
resources (on the bottom).

The summary of the semantic relations can help the user to quickly navigate
to a related topic in one step (i.e. one click). The customized links to searches
for related pages are created through the following scheme: for each property of
a page a search link is provided to find other resources with the same property.
This is true for incoming links as well, which means that is is possible to navigate

52

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Creating and using Semantic Web information with Makna 11

Fig. 6. Statement assistant

53

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

12 Dello, Paslaru, Tolksdorf

Fig. 7. Makna article on Ingrid Bergman

quickly to other resources which have the same relation to the current page. Both
functions work with inference (which can for convenience be switched on and off
by the user), thus enabling the user to navigate the Wiki contents conducted by
semantic relations.

5.3 Content- and structure-based retrieval

Makna implements a search interface resorting to form-based search patterns,
which allow users to use the ontology in formulating structure-based queries and
the underlying inference engines for enabling semantic search.

We have developed several templates for comfortably formulating typical
content- and structure-based query patterns. Figure 8 shows the implementation
of a template returning instances of a user-defined class in a knowledge base.
After choosing a vocabulary from the left drop-down list, the right list is filled
up with all concepts from the chosen ontology.

6 Related Work

A multitude of promising approaches for combining Semantic Web and Wiki
technologies are currently under development (cf., for example, [2, 15, 16, 19, 22]).

54

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Creating and using Semantic Web information with Makna 13

Fig. 8. Form for a simple semantic search

However, while these proposals share the declared common goal of realizing a
Semantic Wiki system, a closer investigation of their—planed or implemented—
features evidences that they are oriented at slightly divergent application sce-
narios.

Approaches such as [16, 19] develop Wiki engines which support the genera-
tion of RDF data. However, they clearly distinguish between semantic and plain
Wiki contents and their usage in Semantic Web context requires technical ex-
pertise on RDF. Acknowledging for this limitations more recent proposals focus
on the minimal invasive usage of semantic technologies within Wiki systems[2,
15, 22]. Makna differs from these approaches from a multitude of viewpoints. In
contrast to WikSAR [2] our system is oriented at non-technical users exercising
collaborative knowledge engineering. This focus motivated a different design of
the user interfaces. Further on, the present implementation of Makna restricts
the access to ontological knowledge (as opposed to instance knowledge) to a pre-
defined set of Wiki users. While this might be considered as a limitation of our
system as compared to other approaches (such as IkeWiki [15]), we argue that
implementing such functionality without adequate process-level support might
have uncontrolled consequences on the operation of the overall Wiki system.
This was confirmed by recent advances in the area of distributed ontology engi-
neering[14, 18]. The Semantic MediaWiki project has come up with a different
approach [10, 22]. Their development aims at turning the hugest existing tradi-
tional Wiki-based information repository—the Wikipedia encyclopedia—into a
semantic Wiki. Similar to our own requirements analysis, the authors identified
the need for typed annotated links and articles in Wikipedia (cf. Section 2). The
current release of the Semantic MediaWiki system shares many commonalities
with the functionality of Makna. In contrast to our implementation it does not
support consistency checking mechanisms and the usage of multiple ontologies.
In turn, it allows for an unrestricted access to both ontological and instance
data, an option which we consider disputable for arbitrary settings without an

55

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

14 Dello, Paslaru, Tolksdorf

adequate process support.8 Because Makna focuses on small to mid-size Wikis
we can utilize some performance critical mechanism like real-time inference, en-
abling features like guaranteed consistence of the model and context-based nav-
igation based on real-time state of the semantic model. Furthermore Makna’s
separation of instance and ontology data—accompanied by the user and ad-
ministrator interfaces (cf. Section 4)—enables predictable response times and
memory usage which are the foundation for an efficient Semantic Wiki system.
Finally we mention the SemperWiki approach [12], which introduces Wikis as
enabling technology for personal information management. Unlike conventional
Wiki and Semantic Wiki solutions—including Makna—it is targeted at single
user environments.

7 Outlook

A feasible combination of Wiki and Semantic Web technologies should preserve
the key advantages of both technologies: the simplicity of Wiki systems as re-
garding shared content authoring, as well as the power of Semantic Web tech-
nologies w.r.t. structuring and retrieving knowledge. Building upon an analysis
of the requirements induced by a collaborative knowledge engineering scenario
to Wiki implementations we have introduced our concept of a Semantic Wiki
engine addressing this problem.

We are currently extending the functionality of the current release of Makna
w.r.t. methodological and technological support for knowledge engineering. In
particular we are investigating means to automatically extract ontological struc-
tures from existing domain-focused Wiki instances (following the approach in
[13]) and are implementing a component for collaborative ontology engineering
based on [14].

Acknowledgements

This work has been partially supported by the EU Network of Excellence “Knowl-

edgeWeb” (FP6-507482).

References

1. Désilets A., S. Paquet, and N. G. Vinson. Are Wikis Usable? In Proceedings of the
1st ACM Wiki Symposium WikiSym2005, 2005.

2. D. Aumüller. Semantic Authoring and Retrieval in a Wiki. In Demo Session at
the European Semantic Web Conference ESWC2005, 2005.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, 2001.

4. M. Bieber, F. Vitali, H. Ashman, V. Balasubramanian, and H. Oinas-Kukkonen.
Forth generation hypermedia: some missing links for the World Wide Web. Inter-
national Journal of Human-Computer Studies, 47, 1997.

8 However, this design decision might prove to be appropriate for the Wikipedia use
case.

56

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Creating and using Semantic Web information with Makna 15

5. W. Cunningham and B. Leuf. The Wiki Way. Quick Collaboration on the Web.
Addison-Wesley, 2001.

6. J. Garrett. Ajax: A New Approach to Web Applications (white pa-
per). http://www.adaptivepath.com/publications/essays/archives/000385.php,
February 2005.

7. T. Hemmann. How Knowledge Engineering Can Benefit from Software Engineering
with Respect to Reuse: Towards Reusable Knowledge Models. In Proceedings of
the ERICM Workshop on Methods and Tools for Software Reuse, pages 212–227,
1993.

8. M. Klein, A. Kiryakov, D. Ognyanov, and D. Fensel. Ontology Versioning and
Change Detection on the Web. In Proceedings of the 13th International Conference
on Knowledge Engineering and Management EKAW02, 2002.

9. K. Kotis, G. A. Vouros, and J. Padilla Alonso. HCOME: tool-supported method-
ology for collaboratively devising living ontologies. In Proceedings of the 2nd In-
ternational Workshop on Semantic Web and Databases SWDB2004, 2004.

10. M. Kroetzsch, D. Vrandecic, and M. Voelkel. Wikipedia and the Semantic Web:
The Missing Links. In Proceedings of 1st International Wikipedia Conference Wiki-
mania2005, 2005.

11. C.W. Krueger. Software Reuse. ACM Computing Surveys, 24(2):131–183, June
1992.

12. E. Oren. Semperwiki: a Semantic Personal Wiki. In Proceedings of the 1st Semantic
Desktop Workshop, 2005.

13. E. Paslaru Bontas, D. Schlangen, and T. Schrader. Creating Ontologies for Content
Representation – the OntoSeed Suite. In Proceedings of the 4th International Con-
ference on Ontologies, Databases, and Applications of Semantics ODBASE2005,
2005.

14. H. S. Pinto, S. Staab, and C. Tempich. DILIGENT: Towards a fine-grained method-
ology for Distributed, Loosely-controlled and evolving Engineering of oNTologies.
In Proceedings of the European Conference of Artificial Intelligence ECAI2004,
pages 393–397, 2004.

15. S. Schaffert. IkeWiki - A Semantic Wiki for Collaborative Knowledge Management.
Technical report, Salzburg Research, 2006.

16. A. Souzis. Building a Semantic Wiki. IEEE Intelligent Systems, 20:87–91, 2005.
17. L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-Driven Ontol-

ogy Evolution Management. In Proceedings of the 13th European Conference on
Knowledge Engineering and Management EKAW02, 2002.

18. Y. Sure, C. Tempich, and D. Vrandecic. Ontology Engineering Methodologies.
In Davies, J. and Studer, R. and Warren, P., editor, Semantic Web Technologies:
Trends and Research in Ontology-based Systems. Wiley, 2006.

19. R. Tazzoli and P. Castagna et al. Towards a Semantic Wiki Wiki Web. In Poster
Session at the International Semantic Web Conference ISWC2004, 2004.

20. P. R. S. Visser, D. M. Jones, T. J. M. Bench-Capon, and M. J. R. Shave. An analysis
of ontological mismatches: Heterogeneity versus interoperability. In Proceedings of
the AAAI Spring Symposium on Ontological Engineering AAAI97, 1997.

21. F. Vitali and M. Bieber. Hypermedia on the Web: What Will It Take? ACM
Computing Surveys, 31(4), 1999.

22. M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer. Semantic
Wikipedia. In Proceedings of the World Wide Web Conference WWW2006 (to
appear), 2006.

57

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Annotation and Navigation in Semantic Wikis?

Eyal Oren1, Renaud Delbru1, Knud Möller1, Max Völkel2, and Siegfried
Handschuh1

1 DERI Galway, Ireland
firstname.lastname@deri.org

2 Forschungzentrum Informatik, Karlsruhe, Germany
voelkel@fzi.de

Abstract. Semantic Wikis allow users to semantically annotate their
Wiki content. The particular annotations can differ in expressive power,
simplicity, and meaning. We present an elaborate conceptual model for
semantic annotations, introduce a unique and rich Wiki syntax for these
annotations, and discuss how to best formally represent the augmented
Wiki content. We improve existing navigation techniques to automat-
ically construct faceted browsing for semistructured data. By utilising
the Wiki annotations we provide greatly enhanced information retrieval.
Further we report on our ongoing development of these techniques in our
prototype SemperWiki.

1 Introduction

Wikis are collaborative hypertext authoring environments. Wikis allow people
to collaboratively collect, describe, and author information. Since most informa-
tion in ordinary Wikis consists of natural-language texts, structured access and
information reuse are practically not possible [13].

Semantic Wikis allow users to make formal descriptions of resources by an-
notating the pages that represent those resources. Where a regular Wiki enables
users to describe resources in natural language, a Semantic Wiki enables users
to additionally describe resources in a formal language. By adding metadata
to ordinary Wiki content, users get added benefits such as improved retrieval,
information exchange, and knowledge reuse.

An ordinary Wiki should offer functionality3 such as access control, binary
data management, version management, notification, and data export. In our
opinion, a Semantic Wiki should specifically address three additional questions:

1. how to annotate content?
2. how to formally represent content?
3. how to navigate content?
? This material is based upon works supported by the Science Foundation Ireland

under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694 and by the European
Commission under the Nepomuk project FP6-027705.

3 http://en.wikipedia.org/wiki/Wiki

58

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Recently several Semantic Wikis have been developed, such as Platypus [22],
WikSAR [2], Semantic MediaWiki [23] and IkeWiki [20]. These Wikis answer
these questions in a rather limited way: (a) they allow only simple annotations
of the current Wiki page; (b) they do not formally separate the page and the con-
cept that it describes; and (c) they do not fully exploit the semantic annotations
for improved navigation.

In this paper we specifically address these three questions in a broader way:
in Sect. 2 we analyse Wiki annotations from a conceptual level, discuss represen-
tation mechanisms, and current annotation support in Semantic Wikis. In Sect.
3 we offer an improved navigational model based on semantic annotation; the
navigation model is similar to e.g. Longwell4 for faceted browsing of semistruc-
tured data, but works, in contrast to existing approaches, for arbitrary datasets
with arbitrary structure. We report on our prototype implementation Semper-
Wiki [12] in Sect. 4; the implementation has been updated to include these new
ideas.

2 Annotations

In the following section we discuss our first question: how to annotate Wiki
content?

Let us first analyse what an annotation is. We annotate data all the time:
when we read a paragraph, and mark “great!” in the margin, that is an an-
notation; when our text editor underlines a misspelled word, that is also an
annotation. Annotations add some information to some other information; to
annotate means “to make notes or comments” [16].

Another way to view annotations is metaphorically: URIs5 are the “atoms”
of the Semantic Web and semantic annotations are the “molecules”. The Seman-
tic Web is about shared terminology, achieved through consistent use of URIs.
Annotations create a relationship between URIs and build up a network of data.

2.1 Conceptual model

We now explore the conceptual model behind annotation in more depth. The
term “annotation” can denote both the process of annotating and the result of
that process [9]. Where we say “annotation” we mean the result. An annotation
attaches some data to some other data. An annotation establishes, within some
context, a (typed) relation between the annotated data and the annotating data.

Investigating the nature of annotation further, we can model it as a quadru-
ple:

Definition 1 (Annotation). An annotation A is a tuple (as, ap, ao, ac), where
as is the subject of the annotation, the annotated data, ao is the object of the
annotation, the annotating data, ap is the predicate, the annotation relation, that

4 http://simile.mit.edu/longwell/
5 http://www.w3.org/Addressing/

59

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

defines the type of relationship between as and ao, and ac is the context in which
the annotation is made.

Example 1 (Informal annotation).

The annotation subject can be formal or informal. For example, when we put
a note in the margin of a paragraph, the informal convention is that the note
applies to the paragraph, but that pointer is not formally defined. If we however
use a formal pointer such as a URI6 to point to the paragraph then the subject
is formally specified.

The annotation predicate can be formal or informal. For example, when we
put a note in the margin, the relation is not formally defined, but we may infor-
mally derive from the context that that the note is a comment, a change-request,
an approval or disapproval, etc. If we use a formal pointer to an ontological term
that indicates the relation (e.g. dc:comment) then the predicate is formally de-
fined.

The annotation object can be formal or informal. If an object is formal we
can distinguish different levels of formality: textual, structural, or ontological.
For example, then string “This is great!” is a textual object. A budget calcu-
lation table in the margin of a project proposal is a structural object. And an
annotation object that is not only explicitly structured but also uses ontological
terms7 is an ontological object.

The annotation context can be formal or informal. Context can could indicate
when the annotation was made and by whom (provenance), or within what scope
the annotation is deemed valid, for example in a temporal scope (it is only valid
in 2006) or in a spatial scope (it is only valid in Western Europe). Usually context
is given informally and implicitly. If we use a formal pointer such as a URI then
the context is formally defined.

Combining the levels of annotation subject, predicate, and object, we can
distinguish three layers in annotations: i) informal annotations, ii) formal anno-
tations (that have formally defined constituents and are thus machine-readable),

6 One can use XPointer to point to a paragraph in a document and XPointer can be
used as a URI, as discussed in http://www.w3.org/TR/xptr-framework/#escaping.

7 Ontological means that the terminology has a commonly understood meaning that
corresponds to an shared conceptualisation called ontology [8]. Whether a term is
ontological is a social matter and not a technical or formal matter. It is sometimes
mistakenly understood that using a formal ontology language makes terms onto-
logical. An ontology however denotes a shared (social) understanding; the ontology
language can be used to formally capture that understanding, but does not preclude
reaching an understanding in the first place.

60

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

and iii) semantic annotations (that have formally defined constituents and use
only ontological terms). We have given some simple examples for each kind of
annotation in Examples 1 (a handwritten margin annotation in a book), 2 (for-
mally expressed in N38) and 3 (formally expressed and using ontological terms),
respectively. All three examples are here given without any explicit context.

Definition 2 (Formal annotation). A formal annotation Af is an annotation
A, where the subject as is a URI, the predicate ap is a URI, the object ao is a
URI or a formal literal, and the context ac is a URI.

Example 2 (Formal annotation).� �
<ht tp : // pape r s . o rg /min ima l i sm#minor>
<ht tp : // l o c a l h o s t / schema#d i s a g r e e >
” that ’ s not minor ! ” .� �

Definition 3 (Semantic annotation). A semantic annotation As is a formal
annotation Af , where the predicate ap and the context ac is an ontological term,
and the object ao conforms9 to an ontological definition of ap.

Example 3 (Semantic annotation).� �
<ht tp : // pape r s . o rg /min ima l i sm#minor>

i b i s : con
[r d f : t ype i b i s : Argument ;

r d f : l a b e l ” that ’ s not minor !”] .� �
2.2 Annotations in Wikis

We can, similarly to [18], distinguish three levels of annotations in a Semantic
Wiki:

Layout Annotations that describe textual formatting without additional struc-
tural information, such as bold or italic words10.

Structure Annotations that describe the structure of a page or of a set of
pages, such as hyperlinks (inter-page structure), headings, subheadings, and
paragraphs (internal page structure), and itemised and numbered lists.

Semantics Annotations that relate pages or page elements to arbitrary re-
sources through typed ontological relations, such as categorising a page in
a taxonomy, specifying the friends of a described person, or the books of a
described author.

8 http://www.w3.org/DesignIssues/Notation3.html
9 The notion of “conformance” is rather weak in some ontology languages (such as

RDFS or OWL) since these are not constraint-based languages (as opposed to e.g.
database schemas). However, we use the notion of conformance to differ between
“good” usage of textual objects, for example to indicate the name of a person, and
“bad” usage of textual objects, for example to indicate the friends of a person.

10 These annotations could formally be considered semantical, because they have an
explicit and shared meaning, which is used by the rendering engine.

61

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Annotations in a regular Wiki are limited to layout and structural annota-
tions. Semantic annotations are unique to Semantic Wikis, and are the further
focus of this section.

We now present one possible annotation syntax for semantic annotations,
namely the one used in SemperWiki [12]. To simplify the annotations, we only
consider annotations that have the page on which they appear as subject. The
annotation subject is thus implicitly defined. We also limit ourselves, for simplic-
ity, to annotations with an implicit context. The annotations are then restricted
to defining the predicate and object, which is done by simply stating the two on
a separate line.

The example page shown in Fig. 1 describes the World Wide Web Consor-
tium. The page includes some English text, and some annotations which state
(using the Wordnet and Semantic Web Research Community ontologies) that
the W3C is an organisation lead by Tim Berners-Lee. The syntax includes ref-
erencing using namespace abbreviations, internal Wiki pages, and full URIs; see
[12] for more information.

W3C

The World Wide Web Consortium (W3C) develops interoperable

technologies (specifications, guidelines, software, and

tools) to lead the Web to its full potential.

rdf:type wordnet:Organization

swrc:head http://www.w3.org/People/Berners-Lee/card#i

dc:date "2006/01/01"

Fig. 1: Simple Wiki page about the W3 Consortium

2.3 Representation

Having defined annotations in Wikis, we now answer the second question: how
to formally represent Wiki content?

RDF11 is a straightforward way to represent these annotations formally, since
it has exactly the same model as our annotations. We can either use standard
RDF to represent annotations without context, or RDF quads (which is a com-
mon RDF extension) for annotations with context.

RDF does pose some constraints on the constituents of triples: the subject
must be a URI or a blank node (not a literal), and the predicate must be a URI
(not a literal or blank node). If we follow these restrictions in our annotations,
RDF offers a good representation model.

11 http://www.w3.org/RDF/

62

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

We represent pages and their annotation in RDF as follows: each page is an
RDF resource, and each annotation a property of that resource. We can represent
not only the semantic annotations in RDF but the whole Wiki content. The (nat-
ural language) Wiki content is captured through the predicate semper:content,
the outgoing links to other pages through the predicate semper:links. Figure
2 shows the RDF graph that represents the page in Fig. 1.

http://wikibase/W3C

wordnet:
Organization

The World Wide Web Consortium (W3C) develops [...]

rdf:type wordnet:Organization
swrc:head http://w3.org/People/Berners-Lee/card#i

http://w3.org/People/
Berners-Lee/card#i

rdf:typeswrc:head

semper:content

2006/01/01dc:date

Fig. 2: RDF graph for the W3C page in Fig. 1

Problem: documents vs. concepts Because annotations can describe con-
cepts (the W3 consortium) and web documents (the page about the W3 Con-
sortium), the question arises which URI to use as the annotation subject.

For example, the Wiki page in Fig. 1 also contains the statement that it
was created on January 1, 2006. But does this statement say that the document
was created in 2006 or that the subject concept of the document, i.e. the W3C,
was created in 2006? We may derive with some background information that we
mean the first, but we actually need a way to say both: we sometimes want to
make statements about a concept and sometimes about the document describing
that concept.

This issue (often referred to as the “URI crisis”) is well-known from early
discussions on Web architecture, and has gained renewed interest in the Semantic
Web community. The problem is that it is unclear what a URI denotes (at least,
it is unclear for URIs that are URLs, but the discussion focuses primarily on http
URIs which are indeed URLs). A URL can denote a name, an abstract concept,
a web location, or a document [5]. The root of the problem is that the same URI
can be used to identify a subject directly (web document) or indirectly (concept
that is subject of document) [15].

63

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Hawke [10] suggests12 to disambiguate the concept and the document syn-
tactically by using the # symbol: http://google.com/ would denote the web
document and http://google.com/# would denote the concept. The solution is
not ideal [15] since the hash symbol is a legal URI character and can be used to
denote a document fragment, while referring to document fragments with URI
fragment identifiers is crucial for fine-grained document annotation13.

Solution: locators vs. names As Pepper remarks, “using a locator for some-
thing that does not have a location is asking for trouble” [15]. The obvious
solution is to not use a locator (URL) but a non-addressable identifier14 (URN)
for non-locatable things such as concepts.

Unfortunately, using a URN to identify concepts violates the fundamental
Web principle that a URI should point to a location with useful information
about the thing it identifies [4]. However, that could be remedied by using a
syntactical convention (mirror-URIs) to relate the document URL to the concept
URN, such as prefixing the URL with the urn: protocol handler.

To complete this solution, we need to extend our Wiki syntax in two ways
to include a way:

1. to distinguish annotations about a document (Wiki page) from annotations
about the concept, which we do by prefixing the annotation with the !
symbol.

2. to relate a page to the concept it describes (in case the page describes a
concept in a different naming authority, e.g. a page on http://wikibase/W3C
that describes urn://w3.org), which we do with semper:about.

Figure 3a shows how these extensions are used to now correctly state that the
W3C (identified by urn://w3.org) is an organisation headed by Tim Berners-
Lee, and that this page (identified by http://wikibase/W3C) was created on
January 1st, 2006, and Fig. 3b shows the corresponding RDF graph.

2.4 Annotation in current Semantic Wikis

Having answered the first two questions (how to annotate and how to represent
Wiki content), we now characterise the annotation and representation in several
existing Semantic Wikis.

Annotations in Semantic Wikis are formal and possibly semantic, i.e. they are
formally defined, and possibly use ontological terms. We have selected several
dimensions to classify annotations in Semantic Wikis from the literature (we
again focus on the annotation result, not the annotation process). We have added
one new dimension to capture the important notion of annotation context :

12 The proposal is a bit more intricate, but for our purposes this explanation suffices.
13 see e.g. http://w3.org/TR/annotor [9].
14 Clarification on the relation between URIs, URLs and URNs can be found at http:

//www.w3.org/TR/uri-clarification/.

64

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

W3C

The World Wide Web Consortium (W3C) develops interoperable

technologies (specifications, guidelines, software, and

tools) to lead the Web to its full potential

semper:about urn://w3.org

rdf:type wordnet:Organization

swrc:head http://www.w3.org/People/Berners-Lee/card#i

Now we have an annotation about the page itself:

!dc:date "2006/01/01"

(a) example page

urn://w3.org

wordnet:
Organization

The World Wide Web Consortium (W3C) develops [...]

semper:about urn://w3.org
rdf:type wordnet:Organization
swrc:head http://w3.org/People/Berners-Lee/card#i
[...]

http://w3.org/People/
Berners-Lee/card#i

rdf:type

swrc:head

semper:content

2006/01/01

http://wikibase/W3C

se
m
pe
r:a
bo
ut

dc:date

document concept

(b) RDF representation

Fig. 3: RDF representation of an example page

65

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Subject attribution (also called “scope” [19]) Indicates the subject of the
annotation: is the subject of the annotation the same as the page on which
it appears or an arbitrary page? In a Wiki, the possible attributions are: the
page on which an annotation appears, an arbitrary page, or an anonymous
resource.

Subject granularity (also called “lexical span” [18]) Indicates the granularity
of the annotation subject: e.g. is the annotation about a document, a section
inside a document, a sentence, or a word?

Representation distinction (also called “instance identification vs. reference”
[3]) Indicates whether the Wiki distinguishes annotations about the Wiki
page itself from annotations of the concept described on the page?

Terminology reuse (also called “interoperability” [19]) Indicates whether an
annotation is self-confined with its own terminology, or whether an anno-
tation uses terms from existing ontologies, and are thus interoperable and
understandable for others.

Object type (also called “annotation form” [7]) Indicates the type of annota-
tion object: is it a literal or textual object, a structural object (including a
hyperlink to another page), or an ontological object?

Context Indicates the context of the annotation: when was it made, by whom
(provenance), and within what scope: the annotation could for example be
temporally scoped (it is only valid in 2006) or spatially scoped (it is only
valid in Western Europe).

These dimensions can indicate the level of annotation in current Semantic
Wiki approaches. We do not provide an exhaustive evaluation, but evaluate
WikSAR [2], Semantic MediaWiki [23], IkeWiki [20] and SemperWiki [12] as the
most prominent systems under ongoing development.

dimension WikSAR Sem. MediaWiki IkeWiki SemperWiki

attribution current current current current, any URI
granularity page page page page, any fragment
repr. distinction no no yes yes
terminology reuse no no yes yes
object type literal, page literal, page literal, page literal, page, URI
context no no no no

Table 1: Annotations in current Semantic Wikis

Subject attribution Most existing Wikis only allow statements about the cur-
rent page. The subject of an annotation is never explicitly stated, but always
implicitly assumed to be the page on which the statement appears. In Sem-
perWiki the user can explicitly state the subject of the annotations, because
we separate the page and the thing it describes (as explained in Sect. 2.3),
and annotations can thus be attributed to arbitrary URIs.

66

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Subject granularity Most existing Wikis only allow annotation of complete
pages, not of subsections or arbitrary parts of text, for the same reason
(implicitly) as mentioned above.
Since SemperWiki allows users to attribute annotations to arbitrary URIs
one could annotate a document fragment as follows: create a Wiki page,
point it to the document fragment using an XPointer URI, and annotate the
page.

Representation distinction Of the discussed Wikis only SemperWiki clearly
separates the page from the concept that it describes, and offers a syntax
that distinguishes annotations of the page from annotations of the concept.
IkeWiki also separates pages from the concepts that they describe (a concept
can be represented on multiple pages), but does not, as far as we know, offer
a syntax to manually express this distinction.

Terminology reuse IkeWiki and SemperWiki allow existing terminology to be
reused in annotations (through namespace definitions or full URIs), the rest
can only create annotations using internal Wiki pages and can thus not make
use of existing terminology.

Object type All discussed Wikis allow an object to be a literal or an internal
Wiki page. Of the discussed Wikis, only SemperWiki allows the object of
an annotation to be an arbitrary URI. No Semantic Wiki allows unnamed
resources (blank nodes) as objects.

Context Is ignored in all existing Wikis.

Summarising, we have developed a conceptual model for annotations in gen-
eral, and for semantic annotations in the context of Semantic Wikis specifically.
Given this model we have seen that current Semantic Wikis offer only limited
annotation possibilities (which is not necessarily wrong, but has now been recog-
nised explicitly), and do not clearly separate the page from the concept that it
describes. We have shown how SemperWiki addresses these limitations.

3 Navigation

Having answered the first two questions, we now investigate the third question:
how to navigate Wiki content?

When navigating an ordinary Wiki, all content is considered either a hy-
perlink or some natural language text. The hyperlinks between pages can be
followed, and the full-text can be searched by keyword. But if users can not
exactly formulate their information need, an exploration technique is necessary
that helps users to discover data [11].

In our opinion, navigating a Wiki has two phases: looking for a page, and
looking at a page. In an ordinary Wiki, exploration in both phases is limited
to predefined hyperlinks. In Semantic Wikis, the semantic annotations structure
the Wiki content, and we can use that structure to offer improved exploration
through a technique called faceted browsing [24].

Existing approaches for faceted browsing rely on manually constructing the
facets for a fixed data structure. But since Wiki content can form arbitrary and

67

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

fluent structures (because users can add arbitrary annotations to pages), we need
to adjust faceted browsing to arbitrary data structures.

In this section, we present our approach to automatically construct facets for
an arbitrary semi-structured dataset, independent of its structure.

3.1 Background

Faceted browsing is a superior exploration technique for large structured datasets
[24,21,6] based on the theory of facet analysis [17].

In faceted browsing, the information space is partitioned using orthogonal
conceptual dimensions of the data (these dimensions are called facets). Each
facet has multiple restriction values; users select a restriction value to constrain
relevant items in the information space.

In the Semantic Wiki, a facet corresponds to an annotation predicate ap

and a restriction value corresponds to an annotation object ao. The annotation
subject is the result (or purpose) of the faceted browsing: faceted browsing is a
search process that takes the predicate and object values as input and returns
possible matching the subject.

For example, a collection of art works can consist of facets (predicates) such
as type of work, time periods, artist names and geographical locations. Users can
select a certain restriction value (object) such as the 20th century to constrain
the visible collection to only some art works. Multiple constraints are applied
conjunctively.

Existing approaches [24,11] cannot navigate arbitrary datasets: they are lim-
ited to manually defined facets over predefined data structures. A technique for
automatic classification of new data under existing facets has been developed
[6], but requires a predefined training set of data and facets, and only works
for textual data. A technique for automatic facet construction based on lexical
dispersion has been developed [1], but is also limited to textual data.

3.2 Automatic facet extraction

We combine several existing techniques to offer faceted browsing for arbitrarily
structured data. Setting up faceted browsing for a specific dataset involves two
steps: i) selecting proper facets and ii) partitioning each facet into a number of
restriction values.

In most existing faceted browsers, both steps are done manually: an admin-
istrator examines the dataset (e.g. a museum collection), selects useful facets
(e.g. time period, artist name, location), and partitions each facet into useful
restriction values: e.g. the time facet would be divided in 20 centuries, the artist
facet into 26 starting letters, and the location (hierarchically) into continent and
then countries.

We focus on automation of the first step: selecting proper facets.

68

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3.3 Facet selection

A facet should only represent one important characteristic of the classified en-
tity [17]. This entity corresponds to our notion of RDF resource. In RDF, each
resource is defined by one or more predicates; these predicates could be consid-
ered as entity characteristics. Our goal is to find, among all available predicates,
those that best represent the dataset.

Frequency A good predicate has a high occurrence frequency inside the collec-
tion. The more distinct resources a predicate covers, the more useful it is in
dividing the information space [6]

Distinguishing power A good predicate has a uniform value distribution (its
distinguishing power is high). A division in which the information is dis-
tributed uniformly across all partitions enables the fastest navigation to an
item of interest.

Object values A good predicate has a limited number of different object values
(between 2 and 20). If there are too many different objects to choose from,
then the options are difficult to display and may disturb the user.

Intuition A good predicate reflects the scope of the information space and is
intuitive for the user. For example, a user who only knows the author of
some book will try to find it by using the facet “author”. Conversely, a user
who only knows the title of a book will try to find it using the “title”.

We define three metrics (for the first three properties) that rank the appro-
priateness of each predicate; we exclude the mathematical treatment for brevity.
Fig. 4 shows these metrics for a sample (CiteSeer) dataset. We cannot define a
metric for intuition, since we cannot properly define intuition.

(a) Predicate frequency (b) Distinguishing
power

(c) Object values

Fig. 4: Metrics in sample data

Frequency To measure the frequency of a predicate, we use a simple function
based on the number of distinct resources that have the predicate. For example,
in Fig. 4a we see that year and type occur frequently in the sample data.

69

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Distinguishing power To measure the distinguishing power of a predicate we
use a simple function based on the number of distinct subjects having the same
object. If each object has the same number of distinct subjects, the score of the
predicate is highest. For example, in Fig. 4b we see that the predicate year is
not very balanced: there are more publications in later years.

Object values For displaying and usability purposes (the user should be able
to have an overview of options and decide on a restriction value), the number of
different object values should be approximately between [2, 20]. For example, in
Fig. 4c we see that the predicate booktitle has many different object values, and
the predicate type only a few (so the latter one would be more usable).

4 Implementation

This section presents our prototype implementations of the previous ideas.
Our open-source prototype SemperWiki15 [12] was initially developed as per-

sonal Wiki for knowledge management, and therefore designed as a desktop ap-
plication. The original version of SemperWiki, shown in Fig. 5, is implemented
in Ruby16, using the GTK17 graphical toolkit.

Fig. 5: SemperWiki prototype

We are currently porting SemperWiki to a Web architecture to make it cross-
platform accessible, using ActiveRDF [14] and Ruby on Rails18. The new version
of SemperWiki contains all the annotation functionality described in Sect. 2, and
clearly distinguishes between documents and concepts, as discussed in Sect. 2.3.
15 http://semperwiki.org
16 http://ruby-lang.org/.
17 http://gtk.org.
18 http://rubyonrails.org

70

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Secondly, we have built a prototype that implements the automatic selection
of facets. The resulting faceted browsing interface is shown in Fig. 6; please note
that this interface is automatically generated for arbitrary data. In this dataset,
year, type, booktitle and journal are the facets (selected from the predicates),
and 1988, 1992, etc. are the facet values (annotation objects without clustering).
The prototype is implemented in Ruby and ActiveRDF, and works on arbitrary
RDF data sources through the generic RDF API of ActiveRDF.

We have not yet done a comprehensive assessment, but an initial evaluation19

looks promising: the metrics automatically select the most important predicates
(such as year, type and author) as the most important facets.

Fig. 6: Faceted browsing prototype

5 Discussion

The results of our work allows us to give good answers to the three initial research
questions of this paper. We are satisfied with this overall results but we will also
have in the following a short discussion about possible unsettled points.

Our approach for annotation in the Semantic Wiki ignores the context of
annotations. Actually, to our knowledge, all annotation approaches ignore the
notion of context. More research is needed on identifying and on modelling con-
text of annotations.
19 On a sample CiteSeer dataset from

http://www.csd.abdn.ac.uk/∼ggrimnes/swdataset.php.

71

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Secondly, when annotating Wiki concepts we might encounter a naming am-
biguity if two people use different URNs for the same real-world concept. But a
large-scale social system as Wikipedia shows us that naming ambiguity tends to
resolve over time (people reuse socially accepted names), especially if enhanced
with a popularity-based recommendation system.

The solution for the representation problem of documents vs. pages, as pre-
sented in Sect. 2.3, has one drawback concerning existing RDF data. Unfortu-
nately the world is already full of RDF statements that do not clearly distinguish
documents and pages, but use URLs to refer to both. Employing our solution,
encountering a URN as subject we would know that the concept is meant, but
encountering a URL we would not be sure that the document is meant; the
URL could be a “legacy” URL that does not conform to our distinction and
is (wrongly) used to identify a concept. Our solution has therefore only limited
applicability, but that is unfortunately the nature of the problem.

6 Conclusion

As explained in the introduction, a Semantic Wiki needs to address three ques-
tions:

1. how to annotate content?
2. how to formally represent content?
3. how to navigate content?

We have developed an elaborate model of annotations and shown how Sem-
perWiki –as opposed to other Semantic Wikis– supports very rich annotations.
We have shown how to formally represent content, and shown how SemperWiki –
as opposed to other Semantic Wikis– correctly distinguishes between documents
and concepts, without limiting the possible annotations. Further, we have pre-
sented how the existing technique of faceted browsing can be adjusted to flexible
semistructured data, by automatically constructing facets from the data. Finally,
we have developed metrics for facet (predicate) selection and techniques for ob-
ject clustering inside each facet.

Faceted browsing is a superior data exploration technique [24]. We have
shown how this technique can be employed for semistructured Wiki content.
The technique works for any formal annotation, without conforming to a fixed
data-schema; and it additionally rewards semantical annotations (because con-
sistent use of shared terminology reduces the search space).

We are currently extending our work in several directions. First, we are in-
tegrating the faceted browser into the Web version of SemperWiki. Secondly,
we are developing the clustering step of the faceted browser, and evaluating the
quality of the facet construction algorithm. Thirdly, we are working on a page
recommendation system, that works in the second phase of Wiki navigation
and recommends (similar or related) pages to the current page, based on the
structure of the Wiki content.

72

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

References

1. P. Anick and S. Tipirneni. Interactive document retrieval using faceted termino-
logical feedback. In HICSS. 1999.

2. D. Aumueller. Semantic authoring and retrieval within a wiki. In ESWC. 2005.
3. S. Bechhofer, et al. The semantics of semantic annotation. In ODBASE. 2002.
4. T. Berners-Lee. Putting the Web back in Semantic Web, 2005. Keynote presenta-

tion at ISWC 2005, http://www.w3.org/2005/Talks/1110-iswc-tbl/.
5. D. Booth. Four uses of a URL: Name, concept, web location, and document in-

stance. http://www.w3.org/2002/11/dbooth-names/dbooth-names clean.htm.
6. W. Dakka, P. Ipeirotis, and K. Wood. Automatic construction of multifaceted

browsing interfaces. In CIKM. 2005.
7. J. Euzenat. Eight Questions about Semantic Web Annotations. IEEE Intelligent

Systems, 17(2):55–62, Mar/Apr 2002.
8. T. R. Gruber. Towards principles for the design of ontologies used for knowledge

sharing. In N. Guarino and R. Poli, (eds.) Formal Ontology in Conceptual Analysis
and Knowledge Representation. Kluwer Academic Publishers, 1993.

9. S. Handschuh. Creating Ontology-based Metadata by Annotation for the Semantic
Web. Ph.D. thesis, University of Karlsruhe, 2005.

10. S. Hawke. Disambiguating RDF identifiers, 2002.
http://www.w3.org/2002/12/rdf-identifiers/.

11. E. Hyvönen, S. Saarela, and K. Viljanen. Ontogator: Combining view- and
ontology-based search with semantic browsing. In Proceedings of XML Finland.
2003.

12. E. Oren. SemperWiki: a semantic personal Wiki. In SemDesk. 2005.
13. E. Oren, J. G. Breslin, and S. Decker. How semantics make better wikis. In WWW.

2006. Poster.
14. E. Oren and R. Delbru. ActiveRDF: Object-oriented RDF in Ruby. In Scripting

for Semantic Web (ESWC). 2006.
15. S. Pepper and S. Schwab. Curing the web’s identity crisis.

http://www.ontopia.net/topicmaps/materials/identitycrisis.html.
16. N. Porter, (ed.) Webster’s Revised Unabridged Dictionary. 1913 edn.
17. S. R. Ranganathan. Elements of library classification. Bombay: Asia Publishing

House, 1962.
18. F. Rinaldi et al. Multilayer annotations in Parmenides. In Proc. of the K-CAP2003

workshop on Knowledge Markup and Semantic Annotation. 2003.
19. P. Sazedj and H. S. Pinto. Time to evaluate: Targeting annotation tools. In Proc.

of Knowledge Markup and Semantic Annotation at ISWC 2005. 2005.
20. S. Schaffert, A. Gruber, and R. Westenthaler. A semantic wiki for collaborative

knowledge formation. In Semantics 2005. 2005.
21. V. Sinha and D. Karger. Magnet: Supporting navigation in semistructured data

environments. In SIGMOD. 2005.
22. R. Tazzoli, P. Castagna, and S. E. Campanini. Towards a semantic wiki wiki web.

In ISWC. 2004.
23. M. Völkel, et al. Semantic wikipedia. In WWW. 2006.
24. K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search

and browsing. In CHI. 2003.

73

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

SweetWiki : Semantic WEb Enabled Technologies in

Wiki

Michel Buffa1,2, Gaël Crova
3
, Fabien Gandon2, Claire Lecompte3,

Jeremy Passeron3

1 Mainline Group, I3S Laboratory, University of Nice
buffa@Unice.fr

2 Acacia Group, INRIA Sophia-Antipolis, France
Fabien.Gandon@sophia.inria.fr

3 University of Nice, France

Abstract. Wikis are social web sites enabling a potentially large number of par-

ticipants to modify any page or create a new page using their web browser. As

they grow, wikis suffer from a number of problems (anarchical structure, large

number of pages, aging navigation paths, etc.). We believe that semantic wikis

can improve navigation and search. In SweetWiki we investigate the use of se-

mantic web technologies to support and ease the lifecycle of the wiki. The very

model of wikis was declaratively described: an OWL schema captures concepts

such as WikiWord, wiki page, forward and backward link, author, etc. This on-

tology is then exploited by an embedded semantic search engine (Corese). In

addition, SweetWiki integrates a standard WYSIWYG editor (Kupu) that we

extended to support semantic annotation following the "social tagging" ap-

proach made popular by web sites such as flickr.com. When editing a page, the

user can freely enter some keywords in an AJAX-powered textfield and an

auto-completion mechanism proposes existing keywords by issuing SPARQL

queries to identify existing concepts with compatible labels. Thus tagging is

both easy (keyword-like) and motivating (real time display of the number of re-

lated pages) and concepts are collected as in folksonomies. To maintain and re-

engineer the folksonomy, we reused a web-based editor available in the under-

lying semantic web server to edit semantic web ontologies and annotations.

Unlike in other wikis, pages are stored directly in XHTML ready to be served

and semantic annotations are embedded in the pages themselves using RDF/A.

If someone sends or copy a page, the annotations follow it, and if an application

crawls the wiki site it can extract the metadata and reuse them.

1 Introduction

Why did wikis become such a phenomenon? At WikiSym 2005, Ward Cunningham

and Jimmy Wales [18, 19] provided some elements of an answer: "a wiki is like a

garden; users (…) must take care of it. Start with some seeds and watch it grow, and

the wiki will become moderated by its users’ community, (…) respect and trust the

users, (…) good things happen when you trust people more than you have reason to,

let everybody express his opinion, no censorship, consensus must be reached, (…) the

74

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

wiki is adapted to a dynamic social structure because of its refactoring features. Do

not impose a rigid structure, users will refactor and structure the wiki as it grows

(…)". This sounds revolutionary and indeed, social aspects are very important and

cannot be neglected when talking about wikis. “Wiki introduced groundbreaking in-

novations at the level of technology for supporting collaborative web authoring, but

also at the level of the process, philosophy and even sociology of such collaborative

authoring” [16, 17]. However, even when wikis have been adopted by a large commu-

nity, they are not a zero-defect solution. The main problem reported is the open struc-

ture that makes navigation, orientation and search difficult [2, 3, 23] and often fails to

scale with the number of pages.

Wikipedia defines a Semantic Wiki as a "Wiki that has an underlying model of the

knowledge described in its pages. (…). Semantic Wikis allow capturing or identifying

further information about the pages (metadata) and their relations. Usually this knowl-

edge model is available in a formal language, so that machines can (at least partially)

process it". We believe that semantic wikis can be searched, navigated and shared

with other applications in better ways than regular wikis. SweetWiki is such a seman-

tic wiki. To address the lack of structure and structuring tools SweetWiki integrates

semantic web technologies at the very core of its wiki engine. It does so without

changing the ease of use that makes wikis so popular.

In section 2 we focus on the problems encountered by large wikis, in particular

navigation and search, and we will explain the concepts of social tagging and folkso-

nomies as means to improve navigation and search. In section 3 we present SweetWiki

in details and insist on its innovative features. In section 4 we present related works

and compare them to SweetWiki. Finally we discuss the future of semantic wikis and

we mention the extensions we are working on.

2 Return on Experience on Wikis

Very few academic papers have addressed the intranet-wiki topic [1]. In [3] we de-

tailed two experiences we conducted over several years with intranet wikis: (1) six

years ago we installed a wiki which is today at the heart of the intranet of the Com-

puter Science department of the University of Nice, with about 400 regular users [4];

and (2) since 2001, we have a close relationship with the ILOG Company which has

developed a very impressive wiki-powered intranet [2].

Companies like Google, Motorola and the New-York Times have made public the

way they use a wiki in their organization [5, 6, 7, chapter 12 of 8]. In [3] we defined

the goals of a business organization intranet and showed how the web technology and

tools helped or failed to reach these goals. We focused on the wiki concept and con-

cluded that its success relies on several social conditions that cannot always be found

in the business organization’s culture (e.g. people must understand why they are work-

ing together; there must not be too much social friction, etc.)

Finally, wikis are not a zero-defect solution. The main problem reported is the dif-

ficulty experienced by users in finding their way in navigating and searching the wiki,

especially when it becomes large. Traditional wikis do not scale very well unless their

structure and structuring tools are improved.

75

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

ILOG uses the aspSeek search engine to index and search the resources of their

wiki-based intranet. Looking at their logs over time it become apparent that the use of

the search engine suddenly dropped, and after a short time people just stopped using

it. Interviews and investigations proved that the assumption that everybody knows

how to use a search engine was wrong [2, 3]. In addition, on the Internet, people can

accept not finding what they are searching for -maybe it is just not out there; on an

intranet, when people know that what they are looking for is there, they don’t under-

stand why a search engine does not find it and finally distrust it altogether. After many

usability tests, the user interface for the search engine was improved, but people still

complain about the difficulty to find things on the wiki. The interviews and question-

naires at the University of Nice confirmed the same problems with their wiki: search is

considered less and less useful as the wiki grows [3].

The New York Times Digital used a wiki that became huge, with thousands of

pages and several problems occurred [8]. They first added navigation bars, but this did

not solve the navigation problem. WikiNames collision was another problem: when

one creates a wiki page one has to choose a name for this page; after two years, users

sometimes had to try dozens of different names before finding a name that had not

already been used. The original idea with WikiNames collision was that if you find

out that there is a page that already exists with the same name, you would “join it”

because it is supposed to be the best place for saying what you have to say. But it just

did not work at the NY Digital: people wanted to create their own page. They invented

funny WikiNames that were no longer meaningful according to their content. Naviga-

tion and searching were so difficult that it was nearly impossible to find a document

without having bookmarked it. Everybody realized that the wiki was becoming a mass

of increasingly inaccessible pages but the user community was not ready to do the

necessary work for refactoring and organizing it all. The writing and publishing proc-

ess in a national newspaper is very structured, and NY Times Digital’s employees

could not get any trace of such a workflow in the wiki. What appeared as a promising

tool that had been widely adopted turned out to be a faulty solution for helping in the

publishing process. Structure and organization became such a big problem that they

had to stop relying on a wiki. It was not completely abandoned but relegated to a

shared notepad, with the structured work being done in other tools.

One can argue that the choice of another wiki engine could have changed the out-

come of this experience, in particular a wiki engine supporting the concept of work-

spaces like TWiki, MoinMoin, JotSpot, SocialText, etc. But we think the problem

runs deeper. Wikis are designed to be structured by the users themselves. People differ

from each other, every individual has his own way of classifying and organizing data,

and this may change over time. A hierarchical structure like the one proposed by the

workspaces is certainly a good thing from a technical point of view but it provides a

superficial modularization of a wiki [14]. Horizontal navigation (following links in the

page itself) is the means most people use. Usability tests showed that most people at

ILOG don’t even know the names of the different workspaces.

Interestingly, a common behavior we noticed is that users started to add category

keywords on the wiki pages. These keywords are WikiNames that lead to pages that

propose hyperlinks to all pages belonging to the same category. This naïve classifica-

tion helps but does not scale. We drew a parallel between this emergent behavior and

76

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

the phenomenon of social tagging used in the public Web by popular sites such as

del.icio.us and flickr.com and also widely used in blogs. You can annotate your blog

entries or the pictures you posted to flickr by associating keywords to them forming a

quasi-classification on-the-fly. These tags are used by technorati.com’s web bots and a

link to your tagged resource is added to the other entries that share the same tag. The

main interest in this way of tagging is its social approach to classification. People can

use whatever tags they feel represent the content of their writing, but they may find out

that this tag has never been used before. So there is a higher probability they will add

other tags that link them to other resources. If one creates a new tag, it is just added

and will be proposed as a choice when another person enters a tag that starts with the

same letters, and maybe this person will in turn choose it. This way, users as individu-

als, can categorize their writing any way they want and at the same time begin a grass

roots taxonomy or folksonomy.

Social tagging and folksonomies are the subjects of debate in different communi-

ties, including the semantic web community [12]. These concepts are often described

as an alternative to ontologies and to the semantic web approach in general [11, 15].

Grubert in [15] published an interesting survey of these different points of view. Some

describe tags and folksonomies as “cheap metadata for the masses” (taxonomies and

ontologies being the land of experts) [33] and others think they are the one true way

[11] and that a flat-hierarchy is more human-brain-friendly, imitating the word-as-a-

label-for-things. But this is also the main drawback of the tags: human-language-

structured thought can jump between concepts; the same word can have totally differ-

ent meanings. Last but not least: each human has their own world-experience, their

own tagging-system that may not be generalized. Where categories are managed by

specialists to achieve the best classification, tags are users’ rough approximation of

classification for a practical use (ethnoclassification).

3 SweetWiki

Wikis were designed in the mid-nineties to exploit the web technologies of the time

i.e. mainly HTML, HTTP and URIs. To make up for the lack of simple remote edition

and storage facilities Wikis developed WikiML variants, WikiWords for specifying

hypertext links, simple versioning mechanisms, etc. The idea of SweetWiki is to re-

visit the design rationale of Wikis, taking into account the wealth of new standards

available for the web eleven years later to address some of the shortcomings identified

through experience.

After evaluating several wiki engines (regular or semantic), we decided to write a

new engine because our vision of the wiki of the future was not compatible with what

we found in existing wikis. We wanted our wiki to:

• rely on web standards: standards for the wiki page format (XHTML), for the mac-

ros one can put in a page (JSPX/XML tags), etc.;

• be articulated around a semantic engine that supports semantic web languages

like RDF/RDFS/OWL/SPARQL/etc.;

77

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

• get rid of the WikiML dialects used and modified by most wiki systems. We took

this decision based on the painful experiences we had with the ILOG intranet

where we integrated WYSIWYG editors in TWiki. We encountered many prob-

lems during the translation between the WikiML and the XHTML languages.

Many WikiML variants do not support all the XHTML produced by the existing

editors. Mixing wikiML with XHTML code was not a clean approach and users

were asking for more intuitive interfaces. Furthermore, we wanted an alternative to

translating WikiML to XHTML each time a page is viewed and doing the reverse

translation each time a page is saved.

• propose faceted navigation and enhanced search tools;

• propose metadata editing in the same user interface used for content editing.

3.1 Principles

Wikis are Web sites where pages are organized around WikiWords and sometime

other constructs such as WikiWebs. To go beyond this informal hyperlink structure,

semantic tagging and restructuring functionalities are needed. To make explicit, ma-

nipulate and exploit such a structure we introduced two ontologies:

• an ontology of the wiki structure: the wiki concepts are usually buried in their ad

hoc implementations; this structure is a special kind of meta-data (forward links,

authors, keywords, etc.) relying on an ontology of wikis (WikiPage, WikiWord,

WikiWeb, etc.); By making this structure and its ontology explicit, we can reason

on it, e.g. to generate navigation pages, we can modify it, e.g. re-engineer the wiki

structure, and we can build on it, e.g. interoperability between several wikis.

• an ontology of the topics: each wiki page addresses one or more topics. In order to

ease navigation while maintaining the usual simplicity, we implemented the usual

keyword mechanism with a domain ontology shared by the whole wiki. By making

this topic ontology explicit we can once again, reason on it, e.g. find semantically

close topics, make complex queries, we can modify it, e.g. tidy the ontology,

merge equivalent concepts, etc.

The ontology of the wiki structure is maintained by developers of the wiki. The do-

main ontology is enriched directly by the users and may be restructured by administra-

tors of the site to improve the navigation and querying capabilities. Other ontologies

may be added at runtime and be immediately accessible to users. To implement these

principles we relied on a semantic web server architecture described in the following

section.

3.2 Architecture

Starting from the users' side, SweetWiki is based on Kupu[34] an XHTML editor in

Javascript which allows us to replace traditional WikiML editing by a WYSIWYG

interface in the user’s browser. Since editing directly produces XHTML, we decided

78

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

to use it as a persistence format. Thus, once saved, a page stands ready to be served by

the Web server.

Fig 1. SweetWiki architecture

Pages are standalone XHTML files including their metadata and thus they can be

crawled by other applications. To address structuring and navigation problems in

wikis we wanted to include tagging at the core of the wiki concept, thus we integrated

four new web technologies: RDF/S and OWL are W3C recommendations to model

metadata on the web [35]; SPARQL is a recommendation for a query language for

RDF [39]; RDF/A is a draft syntax for Embedding RDF in XHTML [36]; GRDDL is

a mechanism for getting RDF data out of XML and XHTML documents using explic-

itly associated transformation algorithms, typically represented in XSLT [37].

With RDF/A we have both page data and metadata in the same standalone file, we

use pure XHTML, pages can be crawled by external applications or saved by users

using their browser without any loss of information.

Figure 1 summarizes the architecture of SweetWiki. The implementation relies on

the CORESE semantic search engine for querying and reasoning [38] and on

SEWESE, its associated web server extension that provides API and JSP tags to im-

plement all the web-based interfaces, as well as a set of generic functionalities (secu-

rity management, ontology editors, web application life cycle, etc.)

3.3 Focus on tagging: using semantic web technology to implement a folksonomy

We are not extremists and like [13 and 14], we propose a mixed approach in order to

“organize the tags”: we link the tags together within a folksonomy described using the

semantic web languages, where tags are organized in a hierarchy and related one to

another using relationships like subClassOf, seeAlso, etc.. Grubert goes further

and proposed in [15] to define “an Internet ecology” for folksonomies i.e. an ontology

Corese Semantic Search Engine

RDFS/OWL
ontologies

RDF
annotations

SeWeSe: Corese Web

server and JSP library

Wiki pages
XHTML/JSPX +

Metadata in RDF/A,
may include JSP

tags
WYSIWYG editor for content + metadata

editing with auto-completion

Ontology/Folksonomy editor (as wiki

pages with jsp tags)

Browsing, Faceted naviga-
tion, enhanced search in wiki

page templates, etc.

Metadata
extraction
using

GRDDL

79

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

for describing folksonomies. Like him, we believe that social tagging minimizes cost

and maximizes user participation. So we do support social tagging in SweetWiki, but

we also think that these tags must be organized. The system we have implemented

helps users build a better folksonomy while relying on standard semantic web tech-

nologies for organizing and maintaining the folksonomy. SweetWiki uses folksono-

mies and social tagging as a better way to categorize the wiki documents [9, 10].

Fig 2. Tags are suggested as the user enters a keyword, the number of pages sharing that tag is

displayed as well as the related category.

SweetWiki integrates a standard WYSIWYG editor (Kupu) that we extended to di-

rectly support semantic annotations following the "social tagging" approach. As

shown in Figure 2, when editing a page, the user can freely enter some keywords in an

AJAX-powered textfield. As the user types, an auto-completion mechanism proposes

existing keywords by issuing SPARQL queries to the semantic web server in order to

identify existing concepts with compatible labels and shows the number of other pages

sharing these concepts as an incentive to use them. Furthermore, related categories are

also displayed in order to address the ambiguity of homonymy. With this approach,

tagging remains easy (keyword-like) and becomes both motivating and unambiguous.

Unknown keywords are collected and attached to new concepts to enrich the folkso-

nomy. Later on, community experts may reposition them in the ontology, edit them,

etc. The feedback coming from the tags is useful for improving the ontology.

When the page is saved in XHTML the associated metadata are saved inside using

the RDF/A syntax, as illustrated by Figure 3. Besides the topic tags (keywords and see

also), metadata include contextual information (e.g. author, last modification, etc.).

Thus the page stands ready to be served by a web server.

80

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

<head>
<link href="http://www.essi.fr/sweetTwiki/wiki.rdfs" rel="schema.WIKI"/>
<meta content="text/html; charset=ISO-8859-15" http-equiv="Content-
Type"/>
<meta content="JavaGui" name="WIKI.name"/>
<link href="#admin" rel="WIKI.author"/>
<meta content="Description - non implemente" name="WIKI.description"/>
<meta content="2006-3-27" name="WIKI.modification"/>
<link href="#Courses" rel="WIKI.hasForWeb"/>
<link href="#JavaJPanel" rel="WIKI.forwardLink"/>
<link href="#JavaJTable" rel="WIKI.forwardLink"/>
<link href="#JTextArea" rel="WIKI.forwardLink"/>
<link href="#JavaJTree" rel="WIKI.forwardLink"/>

<link href="http://www.inria.fr/acacia/java-ontology#GUI"
 rel="WIKI.hasForKeyWord"/>
<link href="http://www.inria.fr/acacia/java-ontology#JLabel"
 rel="WIKI.hasForKeyWord"/>
<link href="#JavaJPanel" rel="WIKI.seeAlso"/>
</head>

Fig 3. How the tags and SeeAlso metadata are described in the wiki page file. This sample

comes from the SweetWiki page in Figure 4. The metadata that use the wiki ontology are auto-

matically generated and never visible by a user. All the RDF code is hidden from regular users.

During the save process, the newly saved page metadata are extracted using the

semantic web server API. This API uses a GRDDL XSLT stylesheet to extract the

metadata in RDF/XML format and feed them to the CORESE engine. Other wiki

pages that hold “create links” (links created before the current page existed) are also

updated and their metadata extracted using the same process. The CORESE engine is

then used to generate faceted navigation widgets: the semantics of the tags is used to

derive related topics, query the engine on similar pages using SPARQL queries, etc.

(see Figure 4).

The pages content is saved in pure XHTML and is ready to be served (without any

further translation as required with a wikiML variant). When a SweetWiki document

is requested by a web browser, templates are used in order to integrate the faceted

navigation widgets around the page content. These templates may be changed like the

skins of TWiki for example, they are just used for decorating the final document.

81

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig 4. Faceted navigation links extracted from the tags.

3.4 Ontology editor for maintaining and re-engineering the folksonomy

Supervising tools are integrated in SweetWiki by relying on the semantic web server

SeWeSe. They are used to monitor the wiki activity itself running SPARQL queries

over the metadata e.g. usage frequency for tags (See Figure 5), new tags, orphan

pages, etc.

In order to maintain and re-engineer the folksonomy, SweetWiki also reuses web-

based editors available in SeWeSe. In our examples we tagged some Java courses,

using a Java ontology. Selecting this ontology in the editor, one can add/remove/edit

concepts (Figure 6). In particular, if a tag/concept has been recently added it may be

inserted in the hierarchy. Figure 7 shows the concept editing tool.

Using these editors, the folksonomy and the annotations may be updated. For in-

stance, community experts can pick a couple of tags and declare semantic relations

between them such as subClassOf. They may also merge concepts when two tags are

synonymous, etc. Enhancements of the ontology seamlessly improve content sharing:

search and faceted navigation benefit directly from the updates. The way the system is

designed, versioning cannot break the annotations. If a tag is suddenly missing it is

just treated as a new tag and if many pages exist with the old tag (pages are not

touched in tag editing process), the tag would re-appear (with a high number of

tagged pages, encouraging other people to use it). It is also possible to merge tags as

several tags may be labels of the same concept.

82

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig 5. tags sorted by popularity

Fig 6. The ontology editor, here illustrated with the Java courses folksonomy. It is possible to

add/edit/remove concepts, properties/settings from here, even import ontologies and merge.

83

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig 7. Editing a concept.

4 Related Work and Positioning

Many semantic wiki projects are being developed. Looking at the state of the art we

can distinguish between approaches considering "the use of wikis for ontologies" and

approaches considering "the use of ontologies for wikis" (while a few engines merge

both approaches)..

Most of the current projects on semantic wikis fall in the first category i.e. they

consider wiki pages as concepts and typed links (in the page content) as relations or

attributes. In this model, called a “Wikitology” in [25], the Wiki becomes the front-

end of the ontology.

One of the first wikis to fall into this category is Platypus [21] that imposes

separately editing the metadata for each wiki page in a “Wiki Metadata page”. It sup-

ports basic ontology editing but with no consistency check between the annotations

and the ontology. It does not come with a reasoning engine and supports only basic

queries. Semantic metadata are used for improving navigation but the main drawback

is that the users have to switch between editing normal text and editing semantic anno-

tations as these activities are done using two distinct text-based editors. Other wikis

like SHAWN [27] offer similar features. The other wikis presented in this category

84

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

address Platypus’ shortcomings by allowing semantic annotations directly in the text

of the page, usually as typed links.

Rise [25] also falls in the first category: the ontology used by the community is ed-

ited via the Wiki itself and a set of naming conventions is used to automatically de-

termine the actual ontology from the Wiki content. A proprietary language is used for

describing the metadata while RDF exportation is possible. Semantic information is

used for navigation and consistency checks. The ontology is built as wiki pages are

updated (rebuilt each night).

Rhizome [20] supports a modified version of WikiML (ZML) that uses special

formatting conventions to indicate semantic intent directly in the page content. Pages

are saved in RDF and another editor can be used to edit the RDF directly. Rhizome

authors admit that this feature is dangerous as one can break the wiki behavior by

entering bad RDF. To mitigate the inherent dangers of this level of openness, Rhizome

Wiki provides fine-grain authorization and validation alongside the use of contexts. It

is not clear how metadata improve the wiki behavior; there is no advanced search and

no help for navigating the wiki so far. RDF-Wiki [29] is similar to Rhizome in that it

allows RDF annotations for external processing.

SeMediaWiki [26] is based on MediaWiki. In contrast to Rise, typed links can also

be used for specifying attributes of the page. For example, the following text: San

Diego is a [[is a::city]] located in the southwestern corner of [[is located

in::California]] establishes the facts “San Diego is a city” and “San Diego is located

in California”. While the text Its coordinates are [[coordinates:=32°42'54"N,

117°09'45"W]] defines an attribute named “coordinates”. These data are used for

faceted navigation. SeMediaWiki translates these metadata into RDF but does not use

a reasoning engine. Other semantic extensions of MediaWiki are available such as

[32] but are still at early stage of development.

Makna [31] is based on JSPWiki and provides semantic extensions as typed links.

It comes with the JENA reasoning engine that allows complex queries. Its text-based

editor proposes extra HTML forms (ajax-powered) for quering the semantic engine

and look for concepts/properties/relationships. This is very useful in the case of a

large ontology.

WikSar [22, 23] enables users to enter semantic annotations from the wiki text edi-

tor using WikiWords. For example: if in a page named “PrinceHamlet”, there is a line

“FigureBy: WilliamShakespeare”, it can be seen as a RDF statement. By combining

all such embedded statements, a formal ontology emerges within the Wiki. The editor

is text-based and proposes neither help of any kind to the user nor any consistency

check. As pages are saved, the metadata are used to propose faceted navigation. Wik-

Sar supports queries in RDQL and SPARQL and queries can be embedded in wiki

pages or templates. A distinctive feature of WikSar is the “interactive graph visualisa-

tion and navigation” tool that can be used for exploring the wiki through its metadata.

Typed links are powerful but one has to remember each concept, relation, property

before typing it and this is not very practical. Ace Wiki goes further: with AceWiki

[40] one can add and modify sentences written using the ACE language (Attempto

Controlled English [41]), through the use of an interactive Ajax-based editor. The

editor is aware of the background ontology, and provides guidance to the user by

proposing only valid completions. Moreover, the editor can be used to extend the

85

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

ontology by creating new concepts, roles and individuals. Therefore, it is also, de

facto, a simple ontology editor.

The second family of approaches focuses on "the use of ontologies for wikis".

IkeWiki [24] supports both WikiML and WYSIWYG editing of page content and

metadata, as well as page tagging. The editor comes with some AJAX features like

auto-completion on metadata. It requires an existing ontology to be loaded. Some

support for ontology editing is provided. It uses Jena and metadata are used for navi-

gation and page rendering. Annotations can be visualized in a frame next to the wiki

page. Each node is a link. IkeWiki has a very nice user interface.

SweetWiki also falls into this second category. It does not implement the Wiki-

tology model yet but we have made provision for such an evolution. So far we support

the concepts of social tagging and folksonomy. SweetWiki is close to WikSar since

they share many features like usage-driven ontology building, queries embedded in the

wiki pages (as JSP tags), edition of metadata and page content in the same editor.

SweetWiki adds a reasoning engine and an extensible WYSIWYG editor for both

content and metadata, (like IkeWiki or Makna). The SweetWiki editor is AJAX-

enhanced and annotating pages leads to instant gratification for users in two ways

since as they type: (a) they can see an instant display of faceted links the annotation

will add to the page; (b) an auto-completion mechanism proposes existing concepts

from the ontology, related categories and number of pages sharing that annotation as

an incentive to reuse existing tags. Furthermore, SweetWiki comes with complete

user-friendly ontology supervising and editing tools. However, SweetWiki is not dedi-

cated to collaborative ontology management (e.g. OntoWiki [30]) but we are currently

brainstorming on how we could add such capabilities to our engine.

5 Discussion

To summarize the overall scenario explored in SweetWiki, we have proposed an in-

novative approach that allows users to edit wiki pages and tag them using a shared

conceptualization behind the scenes. In addition community experts can check the

underlying model being built, look at the tags/concepts proposed by the users and

(re)organize them. If this happens, annotations that users entered are not changed, but

faceted navigation and search based on semantic queries are improved by new links.

As the reader may have noticed in the snapshots, our current experimentation uses

an online course on Java as a test case. The learning objects are organized as wiki

pages and annotated with concepts of the java language.

A number of evolutions are currently under consideration:

• Including forms in wiki pages: the easy creation of pages makes it tempting to

extend the concept to create small web applications in particular processing small

forms. SeWeSe proposes a language merging SPARQL and JSP to generate forms

from the underlying ontology. We are planning on integrating this facility to ease

the development of small front-ends e.g. dedicated advanced search.

• Natural language processing for automatic tagging: several wikis are starting to

analyze the text of wiki pages to suggest potential keywords. Seamless deduction

86

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

of metadata could be achieved by applying natural language processing techniques

to (semi-)automatically derive keywords from the existing content and its context.

• Complete versioning: support versioning of textual content, semantic annotations

and underlying ontologies at the same time;

• Collaborative management of the folksonomy: provide groupware to assist the

distributed lifecycle of ontologies; here the wikitology approach seems only natu-

ral and we need more powerful tools to implement it efficiently.

This last point brings us back to the two-way vision wikis for ontologies and on-

tologies for wikis. This division of the current approaches is only symptomatic of the

early times of semantic wikis. In the long term future semantic wikis should merge

these two approaches as two facets of the same coin as some projects already started

to do it; the objective being to turn this two-way vision into a virtuous circle where

users maintain the ontology and the wiki at the same time without any artificial dis-

tinction between them. For us SweetWiki is an ideal experimentation platform to test

this vision. We are just starting to experiment with the possibilities on different focus

groups.

Acknowledgements

Thanks a lot to Sebastian Shaffert from the semantic wiki mailing list

(swikig@aifb.uni-karlsruhe.de) for starting the “wiki of the future debate”. It was

interesting to see that we were thinking about the same things at the same time. Au-

thors would also like to thanks the ILOG company and the COLOR commission of

INRIA for their scientific and financial support to the “Usable Intranet” project, in the

context of which the work presented here was developed.

References

1. Stenmark, D. (2005). "Knowledge sharing on a corporate intranet: Effects of re-instating web author-
ing capabilities". Proceedings of ECIS 2005, Regensburg, Germany, 26-28 May 2005.

2. C.Chat and C.Nahaboo. (2006). “Let's Build an Intranet at ILOG Like the Internet!”, submitted to the
Intraweb workshop, WWW Conference 2006, Edinburgh.

3. Buffa, M. (2006). “Intranet Wikis”. Accepted to the Intraweb workshop, WWW Conference 2006,
Edinburgh.

4. Buffa M., Sander P., Grattarola J.-C. (2004). “Distant cooperative software development for research
and education: three years of experience”, In proceedings of CALIE’04, Grenoble, France.

5. N.Finck (Digital Web Magazine), M.Hodder, and B.Stone (Google). (2005) “Enhancing Internal
Communications with Blogs, Wikis, and More”:
http://www.nickfinck.com/presentations/bbs2005/01.html

6. D.Merrill’s. (2005) “A view into Google's inner workings”, audio report about presentation at Vortex
2005: http://www.citizenvalley.org/blocnotes/index.php?id_article=241401

7. Inside Google, Rough Type Blog, http://www.roughtype.com/archives/2005/10/inside_google.php
8. Cunningham, W and Leuf, B. (2001). “The Wiki Way: Quick collaboration on the web”. Addison-

Wesley, Boston.
9. S. Powers, (2005), “Cheap Eats at the Semantic Web Caf”é,

http://weblog.burningbird.net/archives/2005/01/27/cheap-eats-at-the-semantic-web-cafe/
10. T. Hammond, T. Hannay, B. Lund, and J. Scott, (2005), “Social Bookmarking Tools, a General Re-

view”, D-Lib Magazine, April 2005, Volume 11 Number 4,
http://www.dlib.org/dlib/april05/hammond/04hammond.html

11. Shirky. C. (2005).” Ontology is overrated”. Etech Talk.
http://www.itconversations.com/shows/detail470.html

87

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

12. Smith. G. (2005). “IA Summit Folksonomies Panel”.
http://atomiq.org/archives/2005/03/ia_summit_folksonomies_panel.html

13. Bird. F. (2005). “Some ideas to improve tags use in social software, flat hierarchy versus categories in
social software”. http://fredbird.org/lire/log/2005-05-17-tags-structuration-proposal

14. Olsen. H. (2005). “Navigation blindness, how to deal with the fact that people tend to ignore naviga-
tion tools”. The Interaction Designer’s Coffee Break, Issue 13, Q1 2005.
http://www.guuui.com/issues/01_05.php

15. Gruber. T. (2005). Folksonomy of Ontology: A Mash-up of Apples and Oranges. First on-Line confer-
ence on Metadata and Semantics Research (MTSR'05). http://mtsr.sigsemis.org/

16. A.Désilet, S.Paquet, N.G.Vinson . (2005). « Are Wikis Usable? », proceedings of the 2005 Interna-
tional Symposium on Wikis, Oct 16-18, San Diego, California, USA.

17. S. Shah. (2004). « The internet is Jain : How Gunslingin’ Technolibertarianism Leads to Lotus Petals
», in proceedings of New Forms Festival, Technography, Vancouver, BC, 2004.

18. Cunningham. W. (2005). Ross Mayffeld’s notes on Cunningham’s Keynote at Wikisym 2005. “Ward
Cunningham on the Crucible of Creativity”.
http://ross.typepad.com/blog/2005/10/ward_cunningham.html

19. Wales. J, founder of Wikipedia / Presentation at Wiki Symposium 2005.
http://recentchanges.info/?p=5

20. Souzis. A. (2005). Building a Semantic Wiki. EEE Intelligent Systems, vol. 20, no. 5, pp. 87-91,
September/October, 2005.

21. Campanini S.E., Castagna P. and Tazzoli R. (2004). Platypus Wiki: a Semantic Wiki Wiki Web.
Semantic Web Applications and Perspectives, Proceedings of 1st Italian Semantic Web Workshop.
December 2004. http://semanticweb.deit.univpm.it/swap2004/cameraready/castagna.pdf

22. AumuellerD. and Auer S. (2005). Towards a Semantic Wiki Experience – Desktop Integration and
Interactivity in WikSAR. Proc. of 1st Workshop on The Semantic Desktop - Next Generation Personal
Information Management and Collaboration Infrastructure, Galway, Ireland, Nov. 6th, 2005.
http://www.semanticdesktop.org/SemanticDesktopWS2005/final/22_aumueller_semanticwikiexperien
ce_final.pdf

23. Aumueller D. (2005). SHAWN: Structure Helps a Wiki Navigate. Proceedings of the BTW-Workshop,
March 2005. W. Mueller and R. Schenkel editor. http://dbs.uni-
leipzig.de/~david/2005/aumueller05shawn.pdf

24. Schaffert S., Gruber A., and Westenthaler R.: A Semantic Wiki for Collaborative Knowledge Forma-
tion . In: Semantics 2005, Vienna, Austria. November 2005.

25. Decker B., Ras E., Rech J., Klein B. and Hoecht C. Self-organized Reuse of Software Engineering
Knowledge Supported by Semantic Wikis. Proceedings of the Workshop on Semantic Web Enabled
Software Engineering (SWESE), held at the 4th International Semantic Web Conference (ISWC 2005)
November 6th - 10th, 2005,Galway, Ireland

26. Krötsch M. and Vrandečić D. and Völke M. (2005). Wikipedia and the Semantic Web - The Missing
Links. Proceedings of the WikiMania2005. http://www.aifb.uni-
karlsruhe.de/WBS/mak/pub/wikimania.pdf

27. Aumueller, D. (2005). SHAWN: Structure Helps a Wiki Navigate. BTW-Workshop “WebDB Meets
IR”, Karlsruhe, 2005-05. http://the.navigable.info/2005/aumueller05shawn.pdf,

28. WikiOnt: http://boole.cs.iastate.edu:9090/wikiont/,
29. RDF Wiki: http://infomesh.net/2001/05/sw/#rdfwiki,
30. Hepp M., Bachlechner D. and Siorpaes K. (2005). OntoWiki: Community-driven Ontology Engineer-

ing and Ontology Usage based on Wikis. Proceedings of the 2005 International Symposium on Wikis
(WikiSym 2005). http://www.heppnetz.de/files/ontowikiDemo-short-camera-ready.pdf

31. Dello K., Tolksdorf R. and Paslaru E. (2005). Makna. Free University of Berlin. http://www.apps.ag-
nbi.de/makna/wiki/About

32. Muljadi H. and Takeda H. (2005). Semantic Wiki as an Integrated Content and Metadata Management
System. Proceedings of ISWC 2005, Galway, Ireland.

33. Merholz P. (2004). Metadata for the Masses. Adaptive Path Blog.
http://www.adaptivepath.com/publications/essays/archives/000361.php

34. Kupu : http://kupu.oscom.org/
35. W3C, Semantic Web Activity, http://www.w3.org/2001/sw/ et http://www.w3.org/2001/sw/Activity
36. RDF/A Primer 1.0 Embedding RDF in XHTML

http://www.w3.org/2001/sw/BestPractices/HTML/2006-01-24-rdfa-primer
37. Gleaning Resource Descriptions from Dialects of Languages (GRDDL)

http://www.w3.org/2004/01/rdxh/spec
38. O. Corby, R. Dieng-Kuntz, C. Faron-Zucker, Querying the Semantic Web with the CORESE search

engine. In Proc. of the 16th European Conference on Artificial Intelligence (ECAI'2004), Valencia,
2004, IOS Press, p. 705-709

39. SPARQL Query Language for RDF http://www.w3.org/TR/rdf-sparql-query/
40. AceWiki : http://gopubmed.biotec.tu-dresden.de/AceWiki/
41. Attempto Controlled English (ACE) : http://www.ifi.unizh.ch/attempto/

88

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

iMapping Wikis—
Towards a Graphical Environment

for Semantic Knowledge Management

Heiko Haller, Felix Kugel, Max Völkel

Forschungszentrum Informatik (FZI), University of Karlsruhe, Germany
{heiko.haller, max.voelkel, felix.kugel}@fzi.de,

http://www.fzi.de/ipe

Abstract. iMapping is a visual technique for structuring information
objects. It is based on research in the fields of visual mapping tech-
niques, Information Visualisation and cognitive psychology. iMapping
uses a Zooming User Interface to facilitate navigation and to help users
maintain an overview in the knowledge space. An iMap is comparable
to a large whiteboard where wiki-pages can be positioned like post-its
but also nested into each other. Augmenting Wikis by providing spatial
browsing and zooming facilities makes it easier to structure content in
an intuitive way. Especially semantic wikis, which typically contain more
fine-grained content, and stress the structure between information items,
can benefit from a graphical approach like iMapping, that allows to dis-
play multiple such items and multiple wiki-pages in one view. This paper
describes the iMapping approach in general, and briefly how it will be
applied as a rich client front-end to the SemWiki engine.

1 Introduction

Wikis have proven to be useful devices to easily store and manage structured in-
formation, and are also increasingly being used for Personal Knowledge Manage-
ment. Semantic technologies however have not found widespread use so far. Using
wikis to also author formal (semantic) knowledge structures seems a promising
approach. However for these semantic technologies to be widely used, it is crucial
that they are very easy to author and that they do not constrict the user in his
work. Also hypertext research has shown, that users often get “lost in hyper-
space”when browsing complex hypermedia without additional navigational help
[1].

When semantically formalised knowledge structures are being used, content
typically becomes more fine grained and the content structure, i.e. the relations
between objects gain importance. This stresses the need for user interfaces that
facilitate navigating and authoring such structures without loosing orientation.
Nowadays’ ontology editors appear to be too complicated for every-day light-
weight use. Outside the wiki and semantics world however, exist quite a number
ot visual mapping techniques (like Mind-Maps, Concept Maps and others), that
provide easy ways to rather intuitively structure fine grained bits of information.

89

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

iMapping is a new visual mapping approach based on Zooming User Inter-
faces, that tries to combine the strengths of several established mapping tech-
niques and go beyond them. It is meant to support easy informal note taking as
well as semi- and fully formalized knowledge engineering in the same powerful
yet easy-to-use environment.

An iMap is like a large pin board, where wiki pages can be spatially arranged
thus enabling users to gain visual overview over several wiki pages at once. Be-
sides classical browsing, an iMapping-enabled wiki can be navigated by zooming
through. We believe that the iMapping approach may well facilitate the use of
wikis-especially when they go semantic.

2 Background

Since external knowledge repositories like wikis usually represent human knowl-
edge and are maintained by humans, it appears sensible to make the UI as cog-
nitively adequate as possible, to enhance the link between mental and external
models. Unlike text, diagrammatic knowledge representations carry a structural
analogy to the content they represent. In other words: A diagram’s structure
looks similar to the structure it is about. A map of Europe looks somehow
like Europe from above. A flow-chart depicts the structure of a process. A text
doesn’t—It takes a longer way in the user’s mind until it can be related to the
user’s mental model [2]. Enabling users to spatially arrange information items al-
lows the creation of such diagrammatic depictions that give an intuitive overview
over a subject matter. This is the very basis of iMapping.

2.1 Related Work

Microcontent Some Wikis, like e.g. SnipSnap 1, already allow including other
wiki pages in a page so, instead of having to follow a link, the user can see the
target page inline. This is a first step into the direction of microcontent (”content
that conveys one primary idea or concept [and] is accessible through a single
definitive URL” 2), which is useful to avoid redundancies, because most pieces
of information are relevant in different contexts. In the same way, pages can be
nested into other pages in an iMap. This leads to a different conceptualisation of
what a wiki page is: many pages will just be little snippets of text, while other
pages will mainly contain such snippets or other resources, thus functioning as
aggregators.

Semantic Desktops and Wikis One of the first Semantic Desktop systems,
that lets the user freely specify semantic relations between typed information
items on a topic maps basis, is DeepaMehta [3]. It provides a graph-based UI
in a thin client. Once an item (or relation) has been specified (in a topic map),

1 see http://snipsnap.org
2 see http://en.wikipedia.org/wiki/Microcontent

90

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

DeepaMehta keeps it in a background repository on the server independent from
whether they are still part of an actual topic map. This separation between the
structural model and visual model makes sense, also for iMapping, because it
allows multiple (visual) instances of an item to be used in different contexts or
locationsmuch like hard links in a Unix file system. Some Semantic Wikis like
SemWiki [4] work in a similar way, but browser based and without a graphical
UI. Others, like SemperWiki [5], are made for local, personal use only and feature
an optimized WYSIWYG UI 3.

Visual Mapping Techniques Visual mapping techniques are methods to
graphically represent knowledge structures. Most of them have been developed
as paper-based techniques for brainstorming, learning facilitation, outlining or to
elicit knowledge structures. Some of them have proven to be very useful in Per-
sonal Knowledge Management, especially for tasks like gathering and structuring
ideas and acquiring an overview on a certain domain. For an overview on visual
mapping techniques, their cognitive psychological background and an evaluation
of some existing techniques and tools, see [6]. In brief, all of these mapping tech-
niques are quite helpful for some purposes but have constraint paradigms that
make them useless for others.

Mind-Maps for example, provide an easy-to-understand tree-like structure
useful for outlining a topic or sorting items. But it is suitable to depict the
relational structure between items.

Concept Maps on the other hand have a graph-based structure that em-
phasizes these relations. But they are not as easy to handle, because explicitly
specifying all these relations is too laborious e.g. for a fast gathering of keywords.

“Spatial Hypertext” is yet another approach. The basic idea is to view a
self-contained hypertext (like a wiki is) from an overview perspective, drilling
down to single pages (which tend towards microcontent). However the Spatial
Hypertext paradigm expressly abandons the concept of explicitly stating rela-
tions between objects and uses spatial positioning as the basic structure. To
fuzzily relate two objects, they are simply placed near to each other, but maybe
not quite as near as to a third object. This allows for so-called “constructive
ambiguity” [7] and is a very intuitive way to deal with vague relations and or-
ders. While Spatial Hypertext in its pure form is not suitable to author formal
knowledge structures like needed in semantic wikis, the general approach may
well be used to augment them as a surface.

Zooming User Interfaces An early research prototype using a zooming ap-
proach was Pad and its successsor Pad++, both developed in Maryland 4. It
has been used in various applications and also as a web browser capable of show-
ing the viewed web pages and their link-structure from a birds view. In a study

3 For more information on Semantic Desktop systems in general, see http://

semanticdesktop.org
4 see http://www.cs.umd.edu/hcil/pad++/

91

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

where participants had to perform browsing tasks in order to answer some ques-
tions, subjects using Pad++ were 23% faster than those using Netscape [8]. This
shows that using large zoomable information surfaces are well-suited hypertext
front-ends. The work on Pad++ has later yielded its successors“Jazz”and finally
“Piccolo”, a toolkit that supports the development of 2D structured graphics
programs, in general, and Zoomable User Interfaces, in particular Piccolo 5.

A Semantic Desktop system whos UI is deeply based on zooming is Men-
talSky 6. It uses machine-learning methods to semantically classify existing re-
sources into clusters that can be browsed by zooming through and restructured
with drag-and-drop interaction. MentalSky is currently in a prototype state of
development. It strongly differs from an iMapping based semantic wiki in the
respect, that it is constraint to managing external resources (like files, pictures,
web-links, etc.) but is not made for authoring content neither in plain text nor
in a formal way.

Levels
Of

Detail

Hide &
Progressive
Disclosure

Focus &
Context

iMapping Design Principles

Visual Information
Seeking Mantra

•overview !rst

• zoom and !lter

•details on demand

7 Tasks of
Information
Visualisation

details"on"demand

overview

zoom

!lter

relate

history

extract

iMapping

iMappping Related Work

Mapping Techniques

Mind!Maps

Concept Maps

Spatial Hypertext

Knowledge Maps

other methods ...

Literature

Designing the User Interface

The Eyes Have It:

Beyond the Plane

Usability Heuristics

Zoomable User Interfaces

Tools

Using Vision to Think

CS-TR-3665 July 1996
ISR-TR-96-66

The Eyes Have It:
A Task by Data Type Taxonomy

for Information Visualizations

Ben Shneiderman
Department of Computer Science

Human-Computer Interaction Laboratory,
and Institute for Systems Research

University of Maryland, College Park, Maryland 20742 USA
ben@cs.umd.edu, http://www/cs.umd.edu/projects/hcil/

Abstract
 A useful starting point for designing advanced graphical user interfaces is the Visual Information-
Seeking Mantra: Overview first, zoom and filter, then details-on-demand. But this is only a starting point
in trying to understand the rich and varied set of information visualizations that have been proposed in
recent years. This paper offers a task by data type taxonomy with seven data types (1-, 2-, 3-dimensional
data, temporal and multi-dimensional data, and tree and network data) and seven tasks (overview, zoom,
filter, details-on-demand, relate, history, and extract).

!"#$%!&$
!"#$%&$'&(%$#%$)$*&)(+,$-)(&.%/01.(2.0*3)(/4(&$'&(/%(/&.$%(5$,+-
+*&$%2/**$2&$,(6"(%$7-&+/*)8(&"#+2-77"(*-9+1-&+/*-7(7+*3):(;.$
)+5+7-%+&"(&/(3*/<7$,1$(%$#%$)$*&-&+/*)()02.(-)(4%-5$)(-*,
)$5-*&+2(*$&)(.-)(7$,(&/(502.($44/%&(+*(0)+*1(."#$%&$'&()")&$5)(4/%
3*/<7$,1$(%$#%$)$*&-&+/*(-*,($'&$*,+*1(."#$%&$'&()")&$5)(&/
5-3$(&.$5(-67$(&/($'#%$))(5/%$:(;.+)(</%3(.-)(5$&(<+&.(7+5+&$,
)022$))(,0$(&/(,+44+207&+$)(+*270,+*1(&.$(&-2+&(-*,()+&0-&$,(*-&0%$(/4
502.(3*/<7$,1$:(=*)&$-,(/4(9+$<+*1(3*/<7$,1$($'#%$))+/*(-)(-*
-77(-&(/*2$($9$*&8(<$(9+$<(+&(-)(-(2/*)&%02&+9$(#%/2$))8(+:$:
3*/<7$,1$(60+7,+*1:(;.$(>+)0-7(?*/<7$,1$(@0+7,$%(A>?@B(7$&)
0)$%)($'#%$))(2/*&$*&(9+-(9+)0-7(/%(&$'&0-7(5$-*)(-*,(7-&$%
4/%5-7+C$(&.-&(2/*&$*&(+*(&.$(4/%5(/4(-&&%+60&$)8(9-70$)8(&"#$)8(-*,
%$7-&+/*):(>?@(#%/-2&+9$7"()0##/%&)(&.+)(#%/2$))(&.%/01.(-()$&(/4
)011$)&+/*(-1$*&)(<./)$(+*&$%-2&+/*(<+&.(&.(0)%(+)(5$,+-&$,(6"
&.$()011$)&+/*(5-*-1$%:(D%$7+5+*-%"($9-70-&+/*(/4(&.$()011$)&+/*
5-*-1$%(-*,()011$)&+/*(-1$*&)("+$7,)(#/)+&+9$(%$)07&)(60&(40%&.$%
2/*4+%5)(&.-&(&.$%$(+)(*/(E)+79$%(6077$&F(4/%(3*/<7$,1$($*1+*$$%+*1
GG()$5-*&+2($'#%$))+/*(+)(5/)&(7+3$7"(&/(.-##$*(,0%+*18(-*,(+)
,%+9$*(6"8(&-)3(#$%4/%5-*2$:

&'()*+,-)./'01/#234)5(/6).5,-7(+,.
!:H:I(J809+,:'(-+0/80(),9'5)./'01/;,).)0('(-+0KL(!"#$%&$'&M
!"#$%5$,+-(G(!"#$%&'#&("')*+()'"+%))(')

<)0),'=/$),:.
N$)+1*8(!05-*(O-2&/%)

>)?@+,1.
)#-&+-7(."#$%&$'&8()011$)&+/*G6-)$,(+*&$%4-2$)8(5+'$,G+*+&+-&+9$
,+-7/1)8(9+)0-7(7-*10-1$8()#-&+-7(#-%)$%8(+*2%5*&-7(4/%5-7+C-&+/*

AB//CD;E%EF/!G6/>GHIJE6<E/

%E;%E#EG$!$8HG
!"#$%&$'&(.-)(7/*1(6$$*(%$2/1*+C$,(-)(-(4/%5(/4(3*/<7$,1$
%$#%$)$*&-&+/*($5#.-)+C+*1(+*&$%,/205$*&(%$7-&+/*):(=*(-,,+&+/*(&/
5/%$(2/55/*(#-1$G)+C$,(*/,$)(4/0*,(+*()")&$5)(7+3$(?PQ(JRK
-*,(&.$(S$68(-(*056$%(/4()")&$5)(.-9$(+*270,$,()5-77$%G)+C$,
+*4/%5-&+/*(2.0*3)(&/(%$#%$)$*&(4+*$%G1%-+*$,(%$7-&+/*):(T-%7"
$'-5#7$)(+*270,$(&.$(%$#%$)$*&-&+/*(/4(Q$-%7$U)(V.+*$)$(W//5
-%105$*&(+*(T027+,(JXYK8(;/075+*G)&%02&0%$,(-*-7")$)(+*

Z/&$V-%,)(JR[K8(-*,(=@=QG6-)$,(,$)+1*(%-&+/*-7$(+*(P+3%/#7+)(J\\K

-*,(1=@=Q(JIK:

;.+)(4+%)&(%/0*,(/4(%$#%$)$*&-&+/*-7(."#$%&$'&(.$7#$,(5/&+9-&$(&.$

,$) +1* (/4 (- (*056$% (/4 ()") &$5)(<+ &. (5/%$ ($'#%$)) +9$

%$#%$)$*&-&+/*):(=NT(JRHK($'&$*,$,(Z/&$V-%,)(&/(+*270,$(-

&',-.!&'+#!"/(4/%(,$4+*+*1(&"#$)(&.%/01.(&.$(+*.$%+&-*2$(/4

-&&%+60&$)(-*,(6$.-9+/%(<+&.+*(&.$(2/*&$'&(/4(+*)&%02&+/*-7(,$)+1*:

QDW=Z;(JXK8(<+&.(-*(-+5(&/($*.-*2+*1(60)+*$))(#%-2&+2$8(0)$,

Q5-77;-73(5$&./,)(-&&-2.$,(&/(-(4%-5$G6-)$,(%$#%$)$*&-&+/*(&/

+*&$1%-&$(."#$%5$,+-8()$5-*&+2(*$&</%38(-*,($'#$%&()")&$5

%$#%$)$*&-&+/*):(V/*2/%,$(JRRK()0##/%&$,(3*/<7$,1$($*1+*$$%+*1

&.%/01.(-(%$#%$)$*&-&+/*(+*(<.+2.(%$7-&+/*)(6$&<$$*(*/,$)(2/07,

6$(2/*)&%-+*$,:(?*/<7$,1$()&%02&0%+*1(<-)(&.$(1/-7(/4(]^0-*$&

JR_K8(<.+2.(-77/<$,(0)$%)(&/(,$4+*$(%$#%$)$*&-&+/*-7()2.$5-)(&.-&

+*270,$,(/6`$2&(-*,(%$7-&+/*(&"#$)8(-&&%+60&$)8(-*,(2/*)&%-+*&):(;.$

-6/9$(%$#%$)$*&-&+/*)($5#.-)+C$(&.$($'#%$))+/*(/4(,$27-%-&+9$

3*/<7$,1$:(D.+,+-)(J\XK(56,,$,(#%/2$,0%-7(3*/<7$,1$(+*(&.$

."#$%&$'&(%$#%$)$*&-&+/*8()02.(-)(+*4$%$*2$)(6-)$,(/*(4/%<-%,G

2.-+*+*18(6"(-77/<+*1(*/,$)(+*(+&)(."#$%6-)$(&/(2/*&-+*(-()&/%$,

^0$%":(]77(/4(&.$)$()")&$5)(67$*,$,(%$#%$)$*&-&+/*)(4%/5

."#$%&$'&(-*,(-%&+4+2+-7(+*&$77+1$*2$:(O0%&.$%(,+)20))+/*)(/4(&.$

,$)+1*(-*,(0)$(/4()02.()")&$5)(-%$(4/0*,(+*(JRaK8(JXRK8(-*,(J\HK:

S/%3(/*(3*/<7$,1$G6-)$,(."#$%&$'&(6$2-5$(7$))(2/55/*(<+&.

&.$($5$%1$*2$(/4(&.$(S$6:(b*$(%$-)/*(+)(&.-&(&.$(S$6U)(#%+5-%"

%$#%$)$*&-&+/*)8($:1:(!;Pc8(,+,(*/&(+*270,(0)407(4-2+7+&+$)(4/%

5/%$(4/%5-7(%$#%$)$*&-&+/*:(P/%$(%$2$*&()&-*,-%,)(.-9$(2.-*1$,

&.-&:(=*,$$,8(5-*"(/4(&.$(-6/9$(&.5)(-%$(6$+*1(%$9+)+&$,(+*

,+)20))+/*)(/4(&.$(EQ$5-*&+2(S$6:F(dPc(+*270,$)(5-*"(/4(&.$

2.-%-2&$%+)&+2)(/4($-%7+$%($44/%&)(<+&.(%$1-%,)(&/(+*&$1%-&+*1(4%-5$G

6-)$,(%$#%$)$*&- & +/*) (-*,(."#$% &$'& : (c+3$(]^0-*$& U)

%$#%$)$*&-&+/*8(+&(+)(-(5$&-G7-*10-1$(&.-&(2-*(6$(0)$,(&/($*2/,$

)#$2+4+2(3*/<7$,1$(%$#%$)$*&-&+/*(7-*10-1$):(;.$(W$)/0%2$

N$)2%+#&+/*(O%-5$</%3(AWNOB(-*,(N]Pceb=c(4/77/<(&.$

3*/<7$,1$(+*&$%2.-*1$(4/%5-&(A?=OB(-*,(3*/<7$,1$(^0$%"(-*,

5-*+#07-&+/*(7-*10-1$(A?fPcB(-)()&-*,-%,)(4/%().-%+*1(2/55/*

#%/2$,0%-7(%$#%$)$*&-&+/*)(/4(3*/<7$,1$:

;.$)$(-%$(-77(%$#%$)$*&-&+/*)(,$)+1*$,(&/(-+,(+*(&.(0)(-*,().-%+*1

/4(3*/<7$,1$(/*2$(+&(+)(%$#%$)$*&$,8(60&(./<(&.$(3*/<7$,1$(+)

E-0&./%$,F(+*(&.$(4+%)&(#7-2$(+)(*/&(2/*)+,$%$,:(b0%(4/20)(+)(/*(./<

&/()0##/%&(&.+)($'#%$))+/*8(<.+2.(<$(2-77(0123.'/4'+5(%./%146(;.+)

+)(-(2/*)&%02&+9$(-2&+9+&"(<.$%$(&.$(-0&./%U)(/<*(3*/<7$,1$(+)

+5#-2&$,(6"(&.$($'#%$))+/*(#%/2$)):(@$)+,$)(#%/9+,+*1(9+)0-78

)#-&+-7(-*,(&$'&0-7(5$-*)(/4(2/550*+2-&+/*8(<$(-%$(60+7,+*1

#%/-2&+9$()0##/%&(4/%(&.+)(#%/2$)):

;.$(*$'&()$2&+/*(,+)20))$)(,+44+207&+$)(<+&.(3*/<7$,1$

%$#%$)$*&-&+/*(-*,(+5#7+2-&+/*)(4/%(,$9$7/#+*1(&//7)(&/(.$7#

!"#$%&'()*+$,,"%-

.%/01"23"*45'12'%3*'%*!,$&'$1*+6,"7&"8&

!"#$%&'()*+#$,&-.&/)0(#12&/33"1,&4"115#+&/#233",&6#371)&68)1(,&9#:(;&<%%#*1==)
>1*#"5+1$5&3?&@3+*;51"&'0)1$01&#$=&@1$51"&?3"&5(1&'5;=A&3?&>):)5#2&B)C"#")18

D1E#8&<F/&G$)H1"8)5A

@3221:1&'5#5)3$,&DI&JJKLMNMOOP&G'<

QO&RJR&KSP&MPOS

8()*+#$T08.5#+;.1=;

D$%5+))+/*(&/(5-3$(,+1+&-7(/%(.-%,(2/#+$)(/4(-77(/%(#-%&(/4(&.+)(</%3(4/%

#$%)/*-7(/%(27-))%//5(0)$(+)(1%-*&$,(<+&./0&(4$$(#%/9+,$,(&.-&(2/#+$)(-%$

/&(5-,$(/%(,+)&%+60&$,(4/%(#%/4+&(/%(2/55$%2+-7(-,9-&-1$(-*,(&.-&(2/#+$)

6$-%(&.+)(*/&+2$(-*,(&.$(4077(2+&-&+/*(/*(&.$(4+%)&(#-1$:(;/(2/#"(/&.$%<+)$8(/%

%$#067+).8(&/(#/)&(/*()$%9$%)(/%(&/(%$,+)&%+60&$(&/(7+)&)8(%$^0+%$)(#%+/%

)#$2+4+2(#$%5+))+/*(-*,M/%(-(4$$:(

789:;8(g0*$(RRGRH8(\hh\8(V/77$1$(D-%38(P-%"7-*,8(iQ]:(

V/#"%+1.&(\hh\(]VP(RGH[RRXGIYYGhMh\Mhhha:::jH:hh:(

25

!"#$%!&$
!"#$%&$'&(%$#%$)$*&)(+,$-)(&.%/01.(2.0*3)(/4(&$'&(/%(/&.$%(5$,+-
+*&$%2/**$2&$,(6"(%$7-&+/*)8(&"#+2-77"(*-9+1-&+/*-7(7+*3):(;.$
)+5+7-%+&"(&/(3*/<7$,1$(%$#%$)$*&-&+/*)()02.(-)(4%-5$)(-*,
)$5-*&+2(*$&)(.-)(7$,(&/(502.($44/%&(+*(0)+*1(."#$%&$'&()")&$5)(4/%
3*/<7$,1$(%$#%$)$*&-&+/*(-*,($'&$*,+*1(."#$%&$'&()")&$5)(&/
5-3$(&.$5(-67$(&/($'#%$))(5/%$:(;.+)(</%3(.-)(5$&(<+&.(7+5+&$,
)022$))(,0$(&/(,+44+207&+$)(+*270,+*1(&.$(&-2+&(-*,()+&0-&$,(*-&0%$(/4
502.(3*/<7$,1$:(=*)&$-,(/4(9+$<+*1(3*/<7$,1$($'#%$))+/*(-)(-*
-77(-&(/*2$($9$*&8(<$(9+$<(+&(-)(-(2/*)&%02&+9$(#%/2$))8(+:$:
3*/<7$,1$(60+7,+*1:(;.$(>+)0-7(?*/<7$,1$(@0+7,$%(A>?@B(7$&)
0)$%)($'#%$))(2/*&$*&(9+-(9+)0-7(/%(&$'&0-7(5$-*)(-*,(7-&$%
4/%5-7+C$(&.-&(2/*&$*&(+*(&.$(4/%5(/4(-&&%+60&$)8(9-70$)8(&"#$)8(-*,
%$7-&+/*):(>?@(#%/-2&+9$7"()0##/%&)(&.+)(#%/2$))(&.%/01.(-()$&(/4
)011$)&+/*(-1$*&)(<./)$(+*&$%-2&+/*(<+&.(&.(0)%(+)(5$,+-&$,(6"
&.$()011$)&+/*(5-*-1$%:(D%$7+5+*-%"($9-70-&+/*(/4(&.$()011$)&+/*
5-*-1$%(-*,()011$)&+/*(-1$*&)("+$7,)(#/)+&+9$(%$)07&)(60&(40%&.$%
2/*4+%5)(&.-&(&.$%$(+)(*/(E)+79$%(6077$&F(4/%(3*/<7$,1$($*1+*$$%+*1
GG()$5-*&+2($'#%$))+/*(+)(5/)&(7+3$7"(&/(.-##$*(,0%+*18(-*,(+)
,%+9$*(6"8(&-)3(#$%4/%5-*2$:

&'()*+,-)./'01/#234)5(/6).5,-7(+,.
!:H:I(J809+,:'(-+0/80(),9'5)./'01/;,).)0('(-+0KL(!"#$%&$'&M
!"#$%5$,+-(G(!"#$%&'#&("')*+()'"+%))(')

<)0),'=/$),:.
N$)+1*8(!05-*(O-2&/%)

>)?@+,1.
)#-&+-7(."#$%&$'&8()011$)&+/*G6-)$,(+*&$%4-2$)8(5+'$,G+*+&+-&+9$
,+-7/1)8(9+)0-7(7-*10-1$8()#-&+-7(#-%)$%8(+*2%5*&-7(4/%5-7+C-&+/*

AB//CD;E%EF/!G6/>GHIJE6<E/

%E;%E#EG$!$8HG
!"#$%&$'&(.-)(7/*1(6$$*(%$2/1*+C$,(-)(-(4/%5(/4(3*/<7$,1$
%$#%$)$*&-&+/*($5#.-)+C+*1(+*&$%,/205$*&(%$7-&+/*):(=*(-,,+&+/*(&/
5/%$(2/55/*(#-1$G)+C$,(*/,$)(4/0*,(+*()")&$5)(7+3$(?PQ(JRK
-*,(&.$(S$68(-(*056$%(/4()")&$5)(.-9$(+*270,$,()5-77$%G)+C$,
+*4/%5-&+/*(2.0*3)(&/(%$#%$)$*&(4+*$%G1%-+*$,(%$7-&+/*):(T-%7"
$'-5#7$)(+*270,$(&.$(%$#%$)$*&-&+/*(/4(Q$-%7$U)(V.+*$)$(W//5
-%105$*&(+*(T027+,(JXYK8(;/075+*G)&%02&0%$,(-*-7")$)(+*

Z/&$V-%,)(JR[K8(-*,(=@=QG6-)$,(,$)+1*(%-&+/*-7$(+*(P+3%/#7+)(J\\K

-*,(1=@=Q(JIK:

;.+)(4+%)&(%/0*,(/4(%$#%$)$*&-&+/*-7(."#$%&$'&(.$7#$,(5/&+9-&$(&.$

,$) +1* (/4 (- (*056$% (/4 ()") &$5)(<+ &. (5/%$ ($'#%$)) +9$

%$#%$)$*&-&+/*):(=NT(JRHK($'&$*,$,(Z/&$V-%,)(&/(+*270,$(-

&',-.!&'+#!"/(4/%(,$4+*+*1(&"#$)(&.%/01.(&.$(+*.$%+&-*2$(/4

-&&%+60&$)(-*,(6$.-9+/%(<+&.+*(&.$(2/*&$'&(/4(+*)&%02&+/*-7(,$)+1*:

QDW=Z;(JXK8(<+&.(-*(-+5(&/($*.-*2+*1(60)+*$))(#%-2&+2$8(0)$,

Q5-77;-73(5$&./,)(-&&-2.$,(&/(-(4%-5$G6-)$,(%$#%$)$*&-&+/*(&/

+*&$1%-&$(."#$%5$,+-8()$5-*&+2(*$&</%38(-*,($'#$%&()")&$5

%$#%$)$*&-&+/*):(V/*2/%,$(JRRK()0##/%&$,(3*/<7$,1$($*1+*$$%+*1

&.%/01.(-(%$#%$)$*&-&+/*(+*(<.+2.(%$7-&+/*)(6$&<$$*(*/,$)(2/07,

6$(2/*)&%-+*$,:(?*/<7$,1$()&%02&0%+*1(<-)(&.$(1/-7(/4(]^0-*$&

JR_K8(<.+2.(-77/<$,(0)$%)(&/(,$4+*$(%$#%$)$*&-&+/*-7()2.$5-)(&.-&

+*270,$,(/6`$2&(-*,(%$7-&+/*(&"#$)8(-&&%+60&$)8(-*,(2/*)&%-+*&):(;.$

-6/9$(%$#%$)$*&-&+/*)($5#.-)+C$(&.$($'#%$))+/*(/4(,$27-%-&+9$

3*/<7$,1$:(D.+,+-)(J\XK(56,,$,(#%/2$,0%-7(3*/<7$,1$(+*(&.$

."#$%&$'&(%$#%$)$*&-&+/*8()02.(-)(+*4$%$*2$)(6-)$,(/*(4/%<-%,G

2.-+*+*18(6"(-77/<+*1(*/,$)(+*(+&)(."#$%6-)$(&/(2/*&-+*(-()&/%$,

^0$%":(]77(/4(&.$)$()")&$5)(67$*,$,(%$#%$)$*&-&+/*)(4%/5

."#$%&$'&(-*,(-%&+4+2+-7(+*&$77+1$*2$:(O0%&.$%(,+)20))+/*)(/4(&.$

,$)+1*(-*,(0)$(/4()02.()")&$5)(-%$(4/0*,(+*(JRaK8(JXRK8(-*,(J\HK:

S/%3(/*(3*/<7$,1$G6-)$,(."#$%&$'&(6$2-5$(7$))(2/55/*(<+&.

&.$($5$%1$*2$(/4(&.$(S$6:(b*$(%$-)/*(+)(&.-&(&.$(S$6U)(#%+5-%"

%$#%$)$*&-&+/*)8($:1:(!;Pc8(,+,(*/&(+*270,(0)407(4-2+7+&+$)(4/%

5/%$(4/%5-7(%$#%$)$*&-&+/*:(P/%$(%$2$*&()&-*,-%,)(.-9$(2.-*1$,

&.-&:(=*,$$,8(5-*"(/4(&.$(-6/9$(&.5)(-%$(6$+*1(%$9+)+&$,(+*

,+)20))+/*)(/4(&.$(EQ$5-*&+2(S$6:F(dPc(+*270,$)(5-*"(/4(&.$

2.-%-2&$%+)&+2)(/4($-%7+$%($44/%&)(<+&.(%$1-%,)(&/(+*&$1%-&+*1(4%-5$G

6-)$,(%$#%$)$*&- & +/*) (-*,(."#$% &$'& : (c+3$(]^0-*$& U)

%$#%$)$*&-&+/*8(+&(+)(-(5$&-G7-*10-1$(&.-&(2-*(6$(0)$,(&/($*2/,$

)#$2+4+2(3*/<7$,1$(%$#%$)$*&-&+/*(7-*10-1$):(;.$(W$)/0%2$

N$)2%+#&+/*(O%-5$</%3(AWNOB(-*,(N]Pceb=c(4/77/<(&.$

3*/<7$,1$(+*&$%2.-*1$(4/%5-&(A?=OB(-*,(3*/<7$,1$(^0$%"(-*,

5-*+#07-&+/*(7-*10-1$(A?fPcB(-)()&-*,-%,)(4/%().-%+*1(2/55/*

#%/2$,0%-7(%$#%$)$*&-&+/*)(/4(3*/<7$,1$:

;.$)$(-%$(-77(%$#%$)$*&-&+/*)(,$)+1*$,(&/(-+,(+*(&.(0)(-*,().-%+*1

/4(3*/<7$,1$(/*2$(+&(+)(%$#%$)$*&$,8(60&(./<(&.$(3*/<7$,1$(+)

E-0&./%$,F(+*(&.$(4+%)&(#7-2$(+)(*/&(2/*)+,$%$,:(b0%(4/20)(+)(/*(./<

&/()0##/%&(&.+)($'#%$))+/*8(<.+2.(<$(2-77(0123.'/4'+5(%./%146(;.+)

+)(-(2/*)&%02&+9$(-2&+9+&"(<.$%$(&.$(-0&./%U)(/<*(3*/<7$,1$(+)

+5#-2&$,(6"(&.$($'#%$))+/*(#%/2$)):(@$)+,$)(#%/9+,+*1(9+)0-78

)#-&+-7(-*,(&$'&0-7(5$-*)(/4(2/550*+2-&+/*8(<$(-%$(60+7,+*1

#%/-2&+9$()0##/%&(4/%(&.+)(#%/2$)):

;.$(*$'&()$2&+/*(,+)20))$)(,+44+207&+$)(<+&.(3*/<7$,1$

%$#%$)$*&-&+/*(-*,(+5#7+2-&+/*)(4/%(,$9$7/#+*1(&//7)(&/(.$7#

!"#$%&'()*+$,,"%-

.%/01"23"*45'12'%3*'%*!,$&'$1*+6,"7&"8&

!"#$%&'()*+#$,&-.&/)0(#12&/33"1,&4"115#+&/#233",&6#371)&68)1(,&9#:(;&<%%#*1==)
>1*#"5+1$5&3?&@3+*;51"&'0)1$01&#$=&@1$51"&?3"&5(1&'5;=A&3?&>):)5#2&B)C"#")18

D1E#8&<F/&G$)H1"8)5A

@3221:1&'5#5)3$,&DI&JJKLMNMOOP&G'<

QO&RJR&KSP&MPOS

8()*+#$T08.5#+;.1=;

D$%5+))+/*(&/(5-3$(,+1+&-7(/%(.-%,(2/#+$)(/4(-77(/%(#-%&(/4(&.+)(</%3(4/%

#$%)/*-7(/%(27-))%//5(0)$(+)(1%-*&$,(<+&./0&(4$$(#%/9+,$,(&.-&(2/#+$)(-%$

/&(5-,$(/%(,+)&%+60&$,(4/%(#%/4+&(/%(2/55$%2+-7(-,9-&-1$(-*,(&.-&(2/#+$)

6$-%(&.+)(*/&+2$(-*,(&.$(4077(2+&-&+/*(/*(&.$(4+%)&(#-1$:(;/(2/#"(/&.$%<+)$8(/%

%$#067+).8(&/(#/)&(/*()$%9$%)(/%(&/(%$,+)&%+60&$(&/(7+)&)8(%$^0+%$)(#%+/%

)#$2+4+2(#$%5+))+/*(-*,M/%(-(4$$:(

789:;8(g0*$(RRGRH8(\hh\8(V/77$1$(D-%38(P-%"7-*,8(iQ]:(

V/#"%+1.&(\hh\(]VP(RGH[RRXGIYYGhMh\Mhhha:::jH:hh:(

25

Toolkit Design for
Interactive Structured Graphics

Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer

Abstract—In this paper, we analyze toolkit designs for building graphical applications with rich user interfaces, comparing polylithic

and monolithic toolkit-based solutions. Polylithic toolkits encourage extension by composition and follow a design philosophy similar to

3D scene graphs supported by toolkits including Java3D and OpenInventor. Monolithic toolkits, on the other hand, encourage
extension by inheritance, and are more akin to 2D Graphical User Interface toolkits such as Swing or MFC. We describe Jazz (a

polylithic toolkit) and Piccolo (a monolithic toolkit), each of which we built to support interactive 2D structured graphics applications in
general, and Zoomable User Interface applications in particular. We examine the trade offs of each approach in terms of performance,

memory requirements, and programmability. We conclude that a polylithic approach is most suitable for toolkit builders, visual design
software where code is automatically generated, and application builders where there is much customization of the toolkit.

Correspondingly, we find that monolithic approaches appear to be best for application builders where there is not much customization
of the toolkit.

Index Terms—Monolithic toolkits, polylithic toolkits, object-oriented design, composition, inheritance, Zoomable User Interfaces
(ZUIs), animation, structured graphics, Graphical User Interfaces (GUIs), Pad++, Jazz, Piccolo.

!

1 INTRODUCTION

APPLICATION developers rely on User Interface (UI)
toolkits such as Microsoft’s MFC and .NET Windows

Forms, and Sun’s Swing and AWT to create visual user
interfaces. However, while these toolkits are effective for
traditional widget-based applications, they fall short when
the developer needs to build a new kind of user interface
component-one that is not bundled with the toolkit. These
components might be simple widgets, such as a range slider
or more complex objects, including interactive graphs and
charts, sophisticated data displays, timeline editors, zoom-
able user interfaces, or fisheye visualizations.

Developing application-specific components usually
requires significant quantities of custom code to manage a
range of features, many of which are similar from one
component to the next. These include managing which
areas of the window need repainting (called region manage-
ment), repainting those regions efficiently, sending events to
the internal object that is under the mouse pointer,
managing multiple views, and integrating with the under-
lying windowing system.

Writing this code is cumbersome, yet most standard 2D
UI toolkits provide only rudimentary support for creating
custom components—typically, just a set of methods for
drawing 2D shapes and methods for listening to low-level
events.

Some toolkits such as Tcl/Tk [19] include a “structured
canvas” component, which supports basic structured

graphics. These canvases typically contain a collection of
graphical 2D objects, including shapes, text, and images.
These components could in principal be used to create
application-specific components. However, structured can-
vases are designed primarily to display graphical data, not
to support new kinds of interaction components. Thus, for
example, they usually do not allow the application to
extend the set of objects that can be placed within the
canvas. We have found that many developers bypass these
structured canvas components and follow a “roll-your-
own” design philosophy, rewriting large quantities of code
and increasing engineering overhead, particularly in terms
of reliability and programmability. There are also commer-
cial toolkits available such as Flash [6] and Adobe SVG
Viewer [2]. But, these approaches are often difficult to
extend and integrate into an application.

We believe future user interface toolkits must address
these problems by providing higher-level libraries for
supporting custom interface components. However, there
is still an open question regarding which design philosophy
to adopt for these higher-level toolkits. The core issue we
address here is whether toolkits should be designed so that
the inevitable complexity and extension of the components
are supported primarily through composition (which we
call polylithic) or inheritance (which we call monolithic).

In this paper, we consider these two design approaches
for interactive structured graphics toolkits through two
toolkits we built: Jazz,1 a polylithic toolkit; and Piccolo,2 a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004 1

. The authors are with the Human-Computer Interaction Laboratory,
Institute for Advanced Computer Studies, Computer Science Department,
University of Maryland, College Park, MD 20742.
E-mail: {bederson, jesse, meyer}@cs.umd.edu.

Manuscript received 16 Sept. 2003; accepted 16 Mar. 2004.
Recommended for acceptance by D. Weiss.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0145-0903.

1. The name Jazz is not an acronym, but rather is motivated by the
music-related naming conventions that the Java Swing toolkit started. In
addition, the letter “J” signifies the Java connection, and the letter “Z”
signifies the zooming connection. Jazz is open source software according to
the Mozilla Public License, and is available at: http://www.cs.umd.edu/
hcil/jazz.

2. The name Piccolo is motivated by the music connection of Jazz and
Swing, and because it is so small (approximately one tenth the size of Jazz).
Piccolo is open source software according to the Mozilla Public License, and
is available at: http://www.cs.umd.edu/hcil/piccolo.

0098-5589/04/$20.00 ! 2004 IEEE Published by the IEEE Computer Society

Mouse

House

Dog

Cat

DaddyMum

Charly

Farm

Farmer

Bulldozer

Horse

Spider

Pig

Office

Computer

Printer

Papers

Boss

Buildings

Stable

search-filter Type: Animal

Mouse

Dog

Cat

Horse

Spider

iMapping Search

iMapping Examples

superordinate Node

new Text...

when [enter] is pressed
while editing a node,

editing is anded and a
Textcursor is set to the

position below the node -
where a new paragraph

would start.

entering text

Fig. 1. An example iMap showing three expanded text pages and several sub-maps
with collapsed items.

5 see http://www.cs.umd.edu/hcil/piccolo/
6 see http://mentalsky.net/ and http://cognitivetools.net/tiki-index.php?

page=MentalSky

92

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3 Design

iMapping tries to combine the advantages of all the above approaches:

– basic wiki functionality (collaborative editing, easy linking, backlinks etc.)
– visual knowledge representations with structural analogy to content
– easy hierarchical overall topology
– facility for graph-based relation mapping
– support for formal semantic statements
– allowing constructive ambiguity
– provide overview by integrating context and detail through zooming

Basic Hierarchy The basis of the iMapping paradigm is a large two-dimen-
sional surface, where items can be freely placed. In a wiki context, these items
mainly correspond to wiki pages. Because these items can contain other items, it
is encouraged to use microcontent rather than long unstructured texts. Whereas
in Mind-Maps or other tree-like diagrams the lower hierarchies branch towards
the outside from a central point, in an iMap hierarchy goes down into deeply
nested nodes that can be zoomed into (see Figure 1). Like explained above, there
can be multiple visual instances of one and the same information object, because
it may be relevant in different contexts.

Other Content Instead of a wiki (text-) page, a node could also contain things
like a picture or other structured objects. It can basically be seen as an inline
link to any resource for which a display method is known. Even inter-wiki or
other remote content could be included inline like that.

Levels of Detail Because some information objects (like most text-pages) are
rather hard to recognise when they are scaled down to thumbnail size, the nodes
should have at least two possible states: open and closed, which could also be seen
as expanded / collapsed or being outside / inside the node. Switching between
these states is done either manually per click or can take place automatically,
depending on how large the object is displayed. This method is also sometimes
referred to as “semantic zooming”. A wiki page could be represented by its name
in collapsed state and with its content in expanded mode. A more structured
article could show his title only from a distance, when zoomed larger also some
additional information like authors and date and when zoomed to reasonable
size, fade over to the full content. Structuring content in the ABCDE format7,
facilitates such semantic zooming.

7 see http://wiki.ontoworld.org/wiki/ABCDEF

93

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Link Structure On the one hand, giving an overview to the structure and
relations between information items is one of the main benefits of the iMapping
approach. On the other hand, just drawing arrows for every link or even every
semantic relation and backlinks to any other item would result in a complete
mess sometimes referred to as the “spaghetti syndrome”. The idea in iMapping
is, to not show any relations by default, and only make them visible on demand
(see Figure 2). This could be a subtle interaction like mouse-over or something
more explicitdepending on user settings or a mode.

Not only naming or even typing links but graphically drawing them between
objects in a concept map (node-and-link) style would go even further beyond
common wiki functionality. However it is a common and well-evaluated technique
that is useful for depicting and authoring relations between information items.
Such links have of course to stay permanently visible. In the same way, it is
possible to semantically interrelate items by simply drawing links between them,
which can than be typed. If this is done using auto-completion, reuse of existing
relation types is fostered.

Levels
Of

Detail

Hide &
Progressive
Disclosure

Focus &
Context

iMapping Design Principles

Visual Information
Seeking Mantra

•overview !rst

• zoom and !lter

•details on demand

7 Tasks of
Information
Visualisation

details"on"demand

overview

zoom

!lter

relate

history

extract

iMapping

iMappping Related Work

Mapping Techniques

Mind!Maps

Concept Maps

Spatial Hypertext

Knowledge Maps

other methods ...

Literature

Designing the User Interface

The Eyes Have It:

Beyond the Plane

Usability Heuristics

Zoomable User Interfaces

Tools

Using Vision to Think

CS-TR-3665 July 1996
ISR-TR-96-66

The Eyes Have It:
A Task by Data Type Taxonomy
for Information Visualizations

Ben Shneiderman
Department of Computer Science

Human-Computer Interaction Laboratory,
and Institute for Systems Research

University of Maryland, College Park, Maryland 20742 USA
ben@cs.umd.edu, http://www/cs.umd.edu/projects/hcil/

Abstract
 A useful starting point for designing advanced graphical user interfaces is the Visual Information-
Seeking Mantra: Overview first, zoom and filter, then details-on-demand. But this is only a starting point
in trying to understand the rich and varied set of information visualizations that have been proposed in
recent years. This paper offers a task by data type taxonomy with seven data types (1-, 2-, 3-dimensional
data, temporal and multi-dimensional data, and tree and network data) and seven tasks (overview, zoom,
filter, details-on-demand, relate, history, and extract).

!"#$%!&$
!"#$%&$'&(%$#%$)$*&)(+,$-)(&.%/01.(2.0*3)(/4(&$'&(/%(/&.$%(5$,+-
+*&$%2/**$2&$,(6"(%$7-&+/*)8(&"#+2-77"(*-9+1-&+/*-7(7+*3):(;.$
)+5+7-%+&"(&/(3*/<7$,1$(%$#%$)$*&-&+/*)()02.(-)(4%-5$)(-*,
)$5-*&+2(*$&)(.-)(7$,(&/(502.($44/%&(+*(0)+*1(."#$%&$'&()")&$5)(4/%
3*/<7$,1$(%$#%$)$*&-&+/*(-*,($'&$*,+*1(."#$%&$'&()")&$5)(&/
5-3$(&.$5(-67$(&/($'#%$))(5/%$:(;.+)(</%3(.-)(5$&(<+&.(7+5+&$,
)022$))(,0$(&/(,+44+207&+$)(+*270,+*1(&.$(&-2+&(-*,()+&0-&$,(*-&0%$(/4
502.(3*/<7$,1$:(=*)&$-,(/4(9+$<+*1(3*/<7$,1$($'#%$))+/*(-)(-*
-77(-&(/*2$($9$*&8(<$(9+$<(+&(-)(-(2/*)&%02&+9$(#%/2$))8(+:$:
3*/<7$,1$(60+7,+*1:(;.$(>+)0-7(?*/<7$,1$(@0+7,$%(A>?@B(7$&)
0)$%)($'#%$))(2/*&$*&(9+-(9+)0-7(/%(&$'&0-7(5$-*)(-*,(7-&$%
4/%5-7+C$(&.-&(2/*&$*&(+*(&.$(4/%5(/4(-&&%+60&$)8(9-70$)8(&"#$)8(-*,
%$7-&+/*):(>?@(#%/-2&+9$7"()0##/%&)(&.+)(#%/2$))(&.%/01.(-()$&(/4
)011$)&+/*(-1$*&)(<./)$(+*&$%-2&+/*(<+&.(&.(0)%(+)(5$,+-&$,(6"
&.$()011$)&+/*(5-*-1$%:(D%$7+5+*-%"($9-70-&+/*(/4(&.$()011$)&+/*
5-*-1$%(-*,()011$)&+/*(-1$*&)("+$7,)(#/)+&+9$(%$)07&)(60&(40%&.$%
2/*4+%5)(&.-&(&.$%$(+)(*/(E)+79$%(6077$&F(4/%(3*/<7$,1$($*1+*$$%+*1
GG()$5-*&+2($'#%$))+/*(+)(5/)&(7+3$7"(&/(.-##$*(,0%+*18(-*,(+)
,%+9$*(6"8(&-)3(#$%4/%5-*2$:

&'()*+,-)./'01/#234)5(/6).5,-7(+,.
!:H:I(J809+,:'(-+0/80(),9'5)./'01/;,).)0('(-+0KL(!"#$%&$'&M
!"#$%5$,+-(G(!"#$%&'#&("')*+()'"+%))(')

<)0),'=/$),:.
N$)+1*8(!05-*(O-2&/%)

>)?@+,1.
)#-&+-7(."#$%&$'&8()011$)&+/*G6-)$,(+*&$%4-2$)8(5+'$,G+*+&+-&+9$
,+-7/1)8(9+)0-7(7-*10-1$8()#-&+-7(#-%)$%8(+*2%5*&-7(4/%5-7+C-&+/*

AB//CD;E%EF/!G6/>GHIJE6<E/

%E;%E#EG$!$8HG
!"#$%&$'&(.-)(7/*1(6$$*(%$2/1*+C$,(-)(-(4/%5(/4(3*/<7$,1$
%$#%$)$*&-&+/*($5#.-)+C+*1(+*&$%,/205$*&(%$7-&+/*):(=*(-,,+&+/*(&/
5/%$(2/55/*(#-1$G)+C$,(*/,$)(4/0*,(+*()")&$5)(7+3$(?PQ(JRK
-*,(&.$(S$68(-(*056$%(/4()")&$5)(.-9$(+*270,$,()5-77$%G)+C$,
+*4/%5-&+/*(2.0*3)(&/(%$#%$)$*&(4+*$%G1%-+*$,(%$7-&+/*):(T-%7"
$'-5#7$)(+*270,$(&.$(%$#%$)$*&-&+/*(/4(Q$-%7$U)(V.+*$)$(W//5
-%105$*&(+*(T027+,(JXYK8(;/075+*G)&%02&0%$,(-*-7")$)(+*

Z/&$V-%,)(JR[K8(-*,(=@=QG6-)$,(,$)+1*(%-&+/*-7$(+*(P+3%/#7+)(J\\K

-*,(1=@=Q(JIK:

;.+)(4+%)&(%/0*,(/4(%$#%$)$*&-&+/*-7(."#$%&$'&(.$7#$,(5/&+9-&$(&.$

,$) +1* (/4 (- (*056$% (/4 ()") &$5)(<+ &. (5/%$ ($'#%$)) +9$

%$#%$)$*&-&+/*):(=NT(JRHK($'&$*,$,(Z/&$V-%,)(&/(+*270,$(-

&',-.!&'+#!"/(4/%(,$4+*+*1(&"#$)(&.%/01.(&.$(+*.$%+&-*2$(/4

-&&%+60&$)(-*,(6$.-9+/%(<+&.+*(&.$(2/*&$'&(/4(+*)&%02&+/*-7(,$)+1*:

QDW=Z;(JXK8(<+&.(-*(-+5(&/($*.-*2+*1(60)+*$))(#%-2&+2$8(0)$,

Q5-77;-73(5$&./,)(-&&-2.$,(&/(-(4%-5$G6-)$,(%$#%$)$*&-&+/*(&/

+*&$1%-&$(."#$%5$,+-8()$5-*&+2(*$&</%38(-*,($'#$%&()")&$5

%$#%$)$*&-&+/*):(V/*2/%,$(JRRK()0##/%&$,(3*/<7$,1$($*1+*$$%+*1

&.%/01.(-(%$#%$)$*&-&+/*(+*(<.+2.(%$7-&+/*)(6$&<$$*(*/,$)(2/07,

6$(2/*)&%-+*$,:(?*/<7$,1$()&%02&0%+*1(<-)(&.$(1/-7(/4(]^0-*$&

JR_K8(<.+2.(-77/<$,(0)$%)(&/(,$4+*$(%$#%$)$*&-&+/*-7()2.$5-)(&.-&

+*270,$,(/6`$2&(-*,(%$7-&+/*(&"#$)8(-&&%+60&$)8(-*,(2/*)&%-+*&):(;.$

-6/9$(%$#%$)$*&-&+/*)($5#.-)+C$(&.$($'#%$))+/*(/4(,$27-%-&+9$

3*/<7$,1$:(D.+,+-)(J\XK(56,,$,(#%/2$,0%-7(3*/<7$,1$(+*(&.$

."#$%&$'&(%$#%$)$*&-&+/*8()02.(-)(+*4$%$*2$)(6-)$,(/*(4/%<-%,G

2.-+*+*18(6"(-77/<+*1(*/,$)(+*(+&)(."#$%6-)$(&/(2/*&-+*(-()&/%$,

^0$%":(]77(/4(&.$)$()")&$5)(67$*,$,(%$#%$)$*&-&+/*)(4%/5

."#$%&$'&(-*,(-%&+4+2+-7(+*&$77+1$*2$:(O0%&.$%(,+)20))+/*)(/4(&.$

,$)+1*(-*,(0)$(/4()02.()")&$5)(-%$(4/0*,(+*(JRaK8(JXRK8(-*,(J\HK:

S/%3(/*(3*/<7$,1$G6-)$,(."#$%&$'&(6$2-5$(7$))(2/55/*(<+&.

&.$($5$%1$*2$(/4(&.$(S$6:(b*$(%$-)/*(+)(&.-&(&.$(S$6U)(#%+5-%"

%$#%$)$*&-&+/*)8($:1:(!;Pc8(,+,(*/&(+*270,(0)407(4-2+7+&+$)(4/%

5/%$(4/%5-7(%$#%$)$*&-&+/*:(P/%$(%$2$*&()&-*,-%,)(.-9$(2.-*1$,

&.-&:(=*,$$,8(5-*"(/4(&.$(-6/9$(&.5)(-%$(6$+*1(%$9+)+&$,(+*

,+)20))+/*)(/4(&.$(EQ$5-*&+2(S$6:F(dPc(+*270,$)(5-*"(/4(&.$

2.-%-2&$%+)&+2)(/4($-%7+$%($44/%&)(<+&.(%$1-%,)(&/(+*&$1%-&+*1(4%-5$G

6-)$,(%$#%$)$*&- & +/*) (-*,(."#$% &$'& : (c+3$(]^0-*$& U)

%$#%$)$*&-&+/*8(+&(+)(-(5$&-G7-*10-1$(&.-&(2-*(6$(0)$,(&/($*2/,$

)#$2+4+2(3*/<7$,1$(%$#%$)$*&-&+/*(7-*10-1$):(;.$(W$)/0%2$

N$)2%+#&+/*(O%-5$</%3(AWNOB(-*,(N]Pceb=c(4/77/<(&.$

3*/<7$,1$(+*&$%2.-*1$(4/%5-&(A?=OB(-*,(3*/<7$,1$(^0$%"(-*,

5-*+#07-&+/*(7-*10-1$(A?fPcB(-)()&-*,-%,)(4/%().-%+*1(2/55/*

#%/2$,0%-7(%$#%$)$*&-&+/*)(/4(3*/<7$,1$:

;.$)$(-%$(-77(%$#%$)$*&-&+/*)(,$)+1*$,(&/(-+,(+*(&.(0)(-*,().-%+*1

/4(3*/<7$,1$(/*2$(+&(+)(%$#%$)$*&$,8(60&(./<(&.$(3*/<7$,1$(+)

E-0&./%$,F(+*(&.$(4+%)&(#7-2$(+)(*/&(2/*)+,$%$,:(b0%(4/20)(+)(/*(./<

&/()0##/%&(&.+)($'#%$))+/*8(<.+2.(<$(2-77(0123.'/4'+5(%./%146(;.+)

+)(-(2/*)&%02&+9$(-2&+9+&"(<.$%$(&.$(-0&./%U)(/<*(3*/<7$,1$(+)

+5#-2&$,(6"(&.$($'#%$))+/*(#%/2$)):(@$)+,$)(#%/9+,+*1(9+)0-78

)#-&+-7(-*,(&$'&0-7(5$-*)(/4(2/550*+2-&+/*8(<$(-%$(60+7,+*1

#%/-2&+9$()0##/%&(4/%(&.+)(#%/2$)):

;.$(*$'&()$2&+/*(,+)20))$)(,+44+207&+$)(<+&.(3*/<7$,1$

%$#%$)$*&-&+/*(-*,(+5#7+2-&+/*)(4/%(,$9$7/#+*1(&//7)(&/(.$7#

!"#$%&'()*+$,,"%-

.%/01"23"*45'12'%3*'%*!,$&'$1*+6,"7&"8&

!"#$%&'()*+#$,&-.&/)0(#12&/33"1,&4"115#+&/#233",&6#371)&68)1(,&9#:(;&<%%#*1==)
>1*#"5+1$5&3?&@3+*;51"&'0)1$01&#$=&@1$51"&?3"&5(1&'5;=A&3?&>):)5#2&B)C"#")18

D1E#8&<F/&G$)H1"8)5A

@3221:1&'5#5)3$,&DI&JJKLMNMOOP&G'<

QO&RJR&KSP&MPOS

8()*+#$T08.5#+;.1=;

D$%5+))+/*(&/(5-3$(,+1+&-7(/%(.-%,(2/#+$)(/4(-77(/%(#-%&(/4(&.+)(</%3(4/%

#$%)/*-7(/%(27-))%//5(0)$(+)(1%-*&$,(<+&./0&(4$$(#%/9+,$,(&.-&(2/#+$)(-%$

/&(5-,$(/%(,+)&%+60&$,(4/%(#%/4+&(/%(2/55$%2+-7(-,9-&-1$(-*,(&.-&(2/#+$)

6$-%(&.+)(*/&+2$(-*,(&.$(4077(2+&-&+/*(/*(&.$(4+%)&(#-1$:(;/(2/#"(/&.$%<+)$8(/%

%$#067+).8(&/(#/)&(/*()$%9$%)(/%(&/(%$,+)&%+60&$(&/(7+)&)8(%$^0+%$)(#%+/%

)#$2+4+2(#$%5+))+/*(-*,M/%(-(4$$:(

789:;8(g0*$(RRGRH8(\hh\8(V/77$1$(D-%38(P-%"7-*,8(iQ]:(

V/#"%+1.&(\hh\(]VP(RGH[RRXGIYYGhMh\Mhhha:::jH:hh:(

25

!"#$%!&$
!"#$%&$'&(%$#%$)$*&)(+,$-)(&.%/01.(2.0*3)(/4(&$'&(/%(/&.$%(5$,+-
+*&$%2/**$2&$,(6"(%$7-&+/*)8(&"#+2-77"(*-9+1-&+/*-7(7+*3):(;.$
)+5+7-%+&"(&/(3*/<7$,1$(%$#%$)$*&-&+/*)()02.(-)(4%-5$)(-*,
)$5-*&+2(*$&)(.-)(7$,(&/(502.($44/%&(+*(0)+*1(."#$%&$'&()")&$5)(4/%
3*/<7$,1$(%$#%$)$*&-&+/*(-*,($'&$*,+*1(."#$%&$'&()")&$5)(&/
5-3$(&.$5(-67$(&/($'#%$))(5/%$:(;.+)(</%3(.-)(5$&(<+&.(7+5+&$,
)022$))(,0$(&/(,+44+207&+$)(+*270,+*1(&.$(&-2+&(-*,()+&0-&$,(*-&0%$(/4
502.(3*/<7$,1$:(=*)&$-,(/4(9+$<+*1(3*/<7$,1$($'#%$))+/*(-)(-*
-77(-&(/*2$($9$*&8(<$(9+$<(+&(-)(-(2/*)&%02&+9$(#%/2$))8(+:$:
3*/<7$,1$(60+7,+*1:(;.$(>+)0-7(?*/<7$,1$(@0+7,$%(A>?@B(7$&)
0)$%)($'#%$))(2/*&$*&(9+-(9+)0-7(/%(&$'&0-7(5$-*)(-*,(7-&$%
4/%5-7+C$(&.-&(2/*&$*&(+*(&.$(4/%5(/4(-&&%+60&$)8(9-70$)8(&"#$)8(-*,
%$7-&+/*):(>?@(#%/-2&+9$7"()0##/%&)(&.+)(#%/2$))(&.%/01.(-()$&(/4
)011$)&+/*(-1$*&)(<./)$(+*&$%-2&+/*(<+&.(&.(0)%(+)(5$,+-&$,(6"
&.$()011$)&+/*(5-*-1$%:(D%$7+5+*-%"($9-70-&+/*(/4(&.$()011$)&+/*
5-*-1$%(-*,()011$)&+/*(-1$*&)("+$7,)(#/)+&+9$(%$)07&)(60&(40%&.$%
2/*4+%5)(&.-&(&.$%$(+)(*/(E)+79$%(6077$&F(4/%(3*/<7$,1$($*1+*$$%+*1
GG()$5-*&+2($'#%$))+/*(+)(5/)&(7+3$7"(&/(.-##$*(,0%+*18(-*,(+)
,%+9$*(6"8(&-)3(#$%4/%5-*2$:

&'()*+,-)./'01/#234)5(/6).5,-7(+,.
!:H:I(J809+,:'(-+0/80(),9'5)./'01/;,).)0('(-+0KL(!"#$%&$'&M
!"#$%5$,+-(G(!"#$%&'#&("')*+()'"+%))(')

<)0),'=/$),:.
N$)+1*8(!05-*(O-2&/%)

>)?@+,1.
)#-&+-7(."#$%&$'&8()011$)&+/*G6-)$,(+*&$%4-2$)8(5+'$,G+*+&+-&+9$
,+-7/1)8(9+)0-7(7-*10-1$8()#-&+-7(#-%)$%8(+*2%5*&-7(4/%5-7+C-&+/*

AB//CD;E%EF/!G6/>GHIJE6<E/

%E;%E#EG$!$8HG
!"#$%&$'&(.-)(7/*1(6$$*(%$2/1*+C$,(-)(-(4/%5(/4(3*/<7$,1$
%$#%$)$*&-&+/*($5#.-)+C+*1(+*&$%,/205$*&(%$7-&+/*):(=*(-,,+&+/*(&/
5/%$(2/55/*(#-1$G)+C$,(*/,$)(4/0*,(+*()")&$5)(7+3$(?PQ(JRK
-*,(&.$(S$68(-(*056$%(/4()")&$5)(.-9$(+*270,$,()5-77$%G)+C$,
+*4/%5-&+/*(2.0*3)(&/(%$#%$)$*&(4+*$%G1%-+*$,(%$7-&+/*):(T-%7"
$'-5#7$)(+*270,$(&.$(%$#%$)$*&-&+/*(/4(Q$-%7$U)(V.+*$)$(W//5
-%105$*&(+*(T027+,(JXYK8(;/075+*G)&%02&0%$,(-*-7")$)(+*

Z/&$V-%,)(JR[K8(-*,(=@=QG6-)$,(,$)+1*(%-&+/*-7$(+*(P+3%/#7+)(J\\K

-*,(1=@=Q(JIK:

;.+)(4+%)&(%/0*,(/4(%$#%$)$*&-&+/*-7(."#$%&$'&(.$7#$,(5/&+9-&$(&.$

,$) +1* (/4 (- (*056$% (/4 ()") &$5)(<+ &. (5/%$ ($'#%$)) +9$

%$#%$)$*&-&+/*):(=NT(JRHK($'&$*,$,(Z/&$V-%,)(&/(+*270,$(-

&',-.!&'+#!"/(4/%(,$4+*+*1(&"#$)(&.%/01.(&.$(+*.$%+&-*2$(/4

-&&%+60&$)(-*,(6$.-9+/%(<+&.+*(&.$(2/*&$'&(/4(+*)&%02&+/*-7(,$)+1*:

QDW=Z;(JXK8(<+&.(-*(-+5(&/($*.-*2+*1(60)+*$))(#%-2&+2$8(0)$,

Q5-77;-73(5$&./,)(-&&-2.$,(&/(-(4%-5$G6-)$,(%$#%$)$*&-&+/*(&/

+*&$1%-&$(."#$%5$,+-8()$5-*&+2(*$&</%38(-*,($'#$%&()")&$5

%$#%$)$*&-&+/*):(V/*2/%,$(JRRK()0##/%&$,(3*/<7$,1$($*1+*$$%+*1

&.%/01.(-(%$#%$)$*&-&+/*(+*(<.+2.(%$7-&+/*)(6$&<$$*(*/,$)(2/07,

6$(2/*)&%-+*$,:(?*/<7$,1$()&%02&0%+*1(<-)(&.$(1/-7(/4(]^0-*$&

JR_K8(<.+2.(-77/<$,(0)$%)(&/(,$4+*$(%$#%$)$*&-&+/*-7()2.$5-)(&.-&

+*270,$,(/6`$2&(-*,(%$7-&+/*(&"#$)8(-&&%+60&$)8(-*,(2/*)&%-+*&):(;.$

-6/9$(%$#%$)$*&-&+/*)($5#.-)+C$(&.$($'#%$))+/*(/4(,$27-%-&+9$

3*/<7$,1$:(D.+,+-)(J\XK(56,,$,(#%/2$,0%-7(3*/<7$,1$(+*(&.$

."#$%&$'&(%$#%$)$*&-&+/*8()02.(-)(+*4$%$*2$)(6-)$,(/*(4/%<-%,G

2.-+*+*18(6"(-77/<+*1(*/,$)(+*(+&)(."#$%6-)$(&/(2/*&-+*(-()&/%$,

^0$%":(]77(/4(&.$)$()")&$5)(67$*,$,(%$#%$)$*&-&+/*)(4%/5

."#$%&$'&(-*,(-%&+4+2+-7(+*&$77+1$*2$:(O0%&.$%(,+)20))+/*)(/4(&.$

,$)+1*(-*,(0)$(/4()02.()")&$5)(-%$(4/0*,(+*(JRaK8(JXRK8(-*,(J\HK:

S/%3(/*(3*/<7$,1$G6-)$,(."#$%&$'&(6$2-5$(7$))(2/55/*(<+&.

&.$($5$%1$*2$(/4(&.$(S$6:(b*$(%$-)/*(+)(&.-&(&.$(S$6U)(#%+5-%"

%$#%$)$*&-&+/*)8($:1:(!;Pc8(,+,(*/&(+*270,(0)407(4-2+7+&+$)(4/%

5/%$(4/%5-7(%$#%$)$*&-&+/*:(P/%$(%$2$*&()&-*,-%,)(.-9$(2.-*1$,

&.-&:(=*,$$,8(5-*"(/4(&.$(-6/9$(&.5)(-%$(6$+*1(%$9+)+&$,(+*

,+)20))+/*)(/4(&.$(EQ$5-*&+2(S$6:F(dPc(+*270,$)(5-*"(/4(&.$

2.-%-2&$%+)&+2)(/4($-%7+$%($44/%&)(<+&.(%$1-%,)(&/(+*&$1%-&+*1(4%-5$G

6-)$,(%$#%$)$*&- & +/*) (-*,(."#$% &$'& : (c+3$(]^0-*$& U)

%$#%$)$*&-&+/*8(+&(+)(-(5$&-G7-*10-1$(&.-&(2-*(6$(0)$,(&/($*2/,$

)#$2+4+2(3*/<7$,1$(%$#%$)$*&-&+/*(7-*10-1$):(;.$(W$)/0%2$

N$)2%+#&+/*(O%-5$</%3(AWNOB(-*,(N]Pceb=c(4/77/<(&.$

3*/<7$,1$(+*&$%2.-*1$(4/%5-&(A?=OB(-*,(3*/<7$,1$(^0$%"(-*,

5-*+#07-&+/*(7-*10-1$(A?fPcB(-)()&-*,-%,)(4/%().-%+*1(2/55/*

#%/2$,0%-7(%$#%$)$*&-&+/*)(/4(3*/<7$,1$:

;.$)$(-%$(-77(%$#%$)$*&-&+/*)(,$)+1*$,(&/(-+,(+*(&.(0)(-*,().-%+*1

/4(3*/<7$,1$(/*2$(+&(+)(%$#%$)$*&$,8(60&(./<(&.$(3*/<7$,1$(+)

E-0&./%$,F(+*(&.$(4+%)&(#7-2$(+)(*/&(2/*)+,$%$,:(b0%(4/20)(+)(/*(./<

&/()0##/%&(&.+)($'#%$))+/*8(<.+2.(<$(2-77(0123.'/4'+5(%./%146(;.+)

+)(-(2/*)&%02&+9$(-2&+9+&"(<.$%$(&.$(-0&./%U)(/<*(3*/<7$,1$(+)

+5#-2&$,(6"(&.$($'#%$))+/*(#%/2$)):(@$)+,$)(#%/9+,+*1(9+)0-78

)#-&+-7(-*,(&$'&0-7(5$-*)(/4(2/550*+2-&+/*8(<$(-%$(60+7,+*1

#%/-2&+9$()0##/%&(4/%(&.+)(#%/2$)):

;.$(*$'&()$2&+/*(,+)20))$)(,+44+207&+$)(<+&.(3*/<7$,1$

%$#%$)$*&-&+/*(-*,(+5#7+2-&+/*)(4/%(,$9$7/#+*1(&//7)(&/(.$7#

!"#$%&'()*+$,,"%-

.%/01"23"*45'12'%3*'%*!,$&'$1*+6,"7&"8&

!"#$%&'()*+#$,&-.&/)0(#12&/33"1,&4"115#+&/#233",&6#371)&68)1(,&9#:(;&<%%#*1==)
>1*#"5+1$5&3?&@3+*;51"&'0)1$01&#$=&@1$51"&?3"&5(1&'5;=A&3?&>):)5#2&B)C"#")18

D1E#8&<F/&G$)H1"8)5A

@3221:1&'5#5)3$,&DI&JJKLMNMOOP&G'<

QO&RJR&KSP&MPOS

8()*+#$T08.5#+;.1=;

D$%5+))+/*(&/(5-3$(,+1+&-7(/%(.-%,(2/#+$)(/4(-77(/%(#-%&(/4(&.+)(</%3(4/%

#$%)/*-7(/%(27-))%//5(0)$(+)(1%-*&$,(<+&./0&(4$$(#%/9+,$,(&.-&(2/#+$)(-%$

/&(5-,$(/%(,+)&%+60&$,(4/%(#%/4+&(/%(2/55$%2+-7(-,9-&-1$(-*,(&.-&(2/#+$)

6$-%(&.+)(*/&+2$(-*,(&.$(4077(2+&-&+/*(/*(&.$(4+%)&(#-1$:(;/(2/#"(/&.$%<+)$8(/%

%$#067+).8(&/(#/)&(/*()$%9$%)(/%(&/(%$,+)&%+60&$(&/(7+)&)8(%$^0+%$)(#%+/%

)#$2+4+2(#$%5+))+/*(-*,M/%(-(4$$:(

789:;8(g0*$(RRGRH8(\hh\8(V/77$1$(D-%38(P-%"7-*,8(iQ]:(

V/#"%+1.&(\hh\(]VP(RGH[RRXGIYYGhMh\Mhhha:::jH:hh:(

25

Toolkit Design for
Interactive Structured Graphics

Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer

Abstract—In this paper, we analyze toolkit designs for building graphical applications with rich user interfaces, comparing polylithic

and monolithic toolkit-based solutions. Polylithic toolkits encourage extension by composition and follow a design philosophy similar to

3D scene graphs supported by toolkits including Java3D and OpenInventor. Monolithic toolkits, on the other hand, encourage
extension by inheritance, and are more akin to 2D Graphical User Interface toolkits such as Swing or MFC. We describe Jazz (a

polylithic toolkit) and Piccolo (a monolithic toolkit), each of which we built to support interactive 2D structured graphics applications in
general, and Zoomable User Interface applications in particular. We examine the trade offs of each approach in terms of performance,

memory requirements, and programmability. We conclude that a polylithic approach is most suitable for toolkit builders, visual design
software where code is automatically generated, and application builders where there is much customization of the toolkit.

Correspondingly, we find that monolithic approaches appear to be best for application builders where there is not much customization
of the toolkit.

Index Terms—Monolithic toolkits, polylithic toolkits, object-oriented design, composition, inheritance, Zoomable User Interfaces
(ZUIs), animation, structured graphics, Graphical User Interfaces (GUIs), Pad++, Jazz, Piccolo.

!

1 INTRODUCTION

APPLICATION developers rely on User Interface (UI)
toolkits such as Microsoft’s MFC and .NET Windows

Forms, and Sun’s Swing and AWT to create visual user
interfaces. However, while these toolkits are effective for
traditional widget-based applications, they fall short when
the developer needs to build a new kind of user interface
component-one that is not bundled with the toolkit. These
components might be simple widgets, such as a range slider
or more complex objects, including interactive graphs and
charts, sophisticated data displays, timeline editors, zoom-
able user interfaces, or fisheye visualizations.

Developing application-specific components usually
requires significant quantities of custom code to manage a
range of features, many of which are similar from one
component to the next. These include managing which
areas of the window need repainting (called region manage-
ment), repainting those regions efficiently, sending events to
the internal object that is under the mouse pointer,
managing multiple views, and integrating with the under-
lying windowing system.

Writing this code is cumbersome, yet most standard 2D
UI toolkits provide only rudimentary support for creating
custom components—typically, just a set of methods for
drawing 2D shapes and methods for listening to low-level
events.

Some toolkits such as Tcl/Tk [19] include a “structured
canvas” component, which supports basic structured

graphics. These canvases typically contain a collection of
graphical 2D objects, including shapes, text, and images.
These components could in principal be used to create
application-specific components. However, structured can-
vases are designed primarily to display graphical data, not
to support new kinds of interaction components. Thus, for
example, they usually do not allow the application to
extend the set of objects that can be placed within the
canvas. We have found that many developers bypass these
structured canvas components and follow a “roll-your-
own” design philosophy, rewriting large quantities of code
and increasing engineering overhead, particularly in terms
of reliability and programmability. There are also commer-
cial toolkits available such as Flash [6] and Adobe SVG
Viewer [2]. But, these approaches are often difficult to
extend and integrate into an application.

We believe future user interface toolkits must address
these problems by providing higher-level libraries for
supporting custom interface components. However, there
is still an open question regarding which design philosophy
to adopt for these higher-level toolkits. The core issue we
address here is whether toolkits should be designed so that
the inevitable complexity and extension of the components
are supported primarily through composition (which we
call polylithic) or inheritance (which we call monolithic).

In this paper, we consider these two design approaches
for interactive structured graphics toolkits through two
toolkits we built: Jazz,1 a polylithic toolkit; and Piccolo,2 a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004 1

. The authors are with the Human-Computer Interaction Laboratory,
Institute for Advanced Computer Studies, Computer Science Department,
University of Maryland, College Park, MD 20742.
E-mail: {bederson, jesse, meyer}@cs.umd.edu.

Manuscript received 16 Sept. 2003; accepted 16 Mar. 2004.
Recommended for acceptance by D. Weiss.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0145-0903.

1. The name Jazz is not an acronym, but rather is motivated by the
music-related naming conventions that the Java Swing toolkit started. In
addition, the letter “J” signifies the Java connection, and the letter “Z”
signifies the zooming connection. Jazz is open source software according to
the Mozilla Public License, and is available at: http://www.cs.umd.edu/
hcil/jazz.

2. The name Piccolo is motivated by the music connection of Jazz and
Swing, and because it is so small (approximately one tenth the size of Jazz).
Piccolo is open source software according to the Mozilla Public License, and
is available at: http://www.cs.umd.edu/hcil/piccolo.

0098-5589/04/$20.00 ! 2004 IEEE Published by the IEEE Computer Society

Mouse

House

Dog

Cat

DaddyMum

Charly

Farm

Farmer

Bulldozer

Horse

Spider

Pig

Office

Computer

Printer

Papers

Boss

Buildings

Stable

search-filter Type: Animal

Mouse

Dog

Cat

Horse

Spider

iMapping Search

iMapping Examples

superordinate Node

new Text...

when [enter] is pressed
while editing a node,

editing is anded and a
Textcursor is set to the

position below the node -
where a new paragraph

would start.

entering text

Fig. 2. The same iMap but with link-structure of one item made visible.

94

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

To sum up, this makes three structurally different ways of interrelating items
in an iMapping environment:

– wiki-style text-links
(linking from a particular text position to another item)

– nesting items into another
(including the link target inline at a specified position)

– linking on an item level
(stating a relation between two objects)

Each of these can be mere navigational links or carry formal semantics, if
specified.

4 Discussion

Whether the iMapping approach will be successful, user studies and time will
have to tell. It is a concept so far. A first prototype environment is under devel-
opment and might be available by mid 2006. While our implementation is based
on a java client to take advantage of the Piccolo framework (s. above), a flash- or
SVG+AJAX-based version would allow browser-based usage, which would come
closer to common wiki use.

Also, since the iMapping approach was initially designed for personal use,
there might be unforeseen difficulties when used in a collaborative setting, like
most wikis are. For example, there could be dissent on how items should be spa-
tially arranged. But hopefully, like it is common in wiki culture, over time layouts
will converge to a structure that finds consensus. Another approach would be to
use personal profiles to let users make their personalised spatial arrangements
of the content. The better the content and its structure represented using de-
fined semantics, the easier it is to separate it from its visual appearance and to
syndicate it to other applications.

5 Outlook

Wikis have started as very simple content management systems and many en-
gines have grown immensely feature-rich by now. The step to semantic wikis is
very promising and could give the realisation of the Semantic Web a significant
boost. But it surely doesnt make these wikis easier to use. Focussing on user in-
teraction and cognitive ergonomics will be an important point, if semantic wikis
are to become widely used whether collaboratively or for personal knowledge
management. In the Open Source Social-Semantic-Desktop Project Nepomuk8,
a first iMapping Wiki is being developed, and anticipated to become available
during 2007. It will then become part of a more comprehensive knowledge work-
bench integrating Semantic Desktop functionalities like application integration,
and semantic search with a distributed p2p-based collaboration environment.
8 see http://Nepomuk.semanticdesktop.org

95

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Acknowledgments:

Research reported in this paper has been partially financed by the EU in the Social
Semantic Desktop project NEPOMUK (IST-FP6-027705). I would also like to thank
Benjamin Heitman for fruitful discussions and last-minute technical assistance.

References

1. Tergan, S.O.: Hypertext und Multimedia: Konzeption, Lernmöglichkeiten, Lern-
probleme und Perspektiven. In: Information und Lernen mit Multimedia und Inter-
net. third, completely revised edn. Beltz, PVU (2002)

2. Schnotz, W.: Wissenserwerb mit Texten, Bildern und Diagrammen. In: Information
und Lernen mit Multimedia und Internet. third, completely revised edn. Beltz, PVU,
Weinheim (2002)

3. Richter, J., Völkel, M., Haller, H.: Deepamehta - a semantic desktop. In Decker, S.,
Park, J., Quan, D., Sauermann, L., eds.: Proceedings of the 1st Workshop on The
Semantic Desktop. 4th International Semantic Web Conference (Galway, Ireland).
Volume 175., CEUR-WS (2005)

4. Völkel, M., Oren, E.: Personal knowledge management with semantic wikis (2006)
Paper submitted to ESWC2006, available at http://semwiki.ontoware.org/.

5. Oren, E.: Semperwiki: a semantic personal wiki. In: Proceedings of the 1st Workshop
on The Semantic Desktop, Galway, Irland. (2005)

6. Haller, H.: Mappingverfahren zur Wissensorganisation (2003) Knowledge Board
Europe. Availlable online at http://heikohaller.de/literatur/diplomarbeit/.

7. Shipman, F., Marshall, C.: Spatial hypertext: An alternative to navigational and
semantic links. ACM Comp. Surveys 31 (1999)

8. Bederson, B.B., Hollan, J.D., Stewart, J., Rogers, D., Vick, D.: A zooming web
browser. Human Factors in Web Development (1998)

96

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

The ABCDE Format

Enabling Semantic Conference Proceedings

Anita de Waard1,2 and Gerard Tel2

1 Advanced Technology Group
Elsevier, The Netherlands

anita@cs.uu.nl
2 Department of Computer Science
Utrecht University, The Netherlands

gerard@cs.uu.nl

Core Matter

– We believe that the best way to present a narrative to a computer is to let
the author explicitly create a rich semantic structure for the article during
writing.

– We propose an open-standard, widely (re)useable format, the ABCDE for-
mat for proceedings and workshop contributions that can be easily mined,
integrated and consumed by semantic browsers and wikis.

– There need not be an abstract in an ABCDE document - instead, the author
denotes core sentences within the B,C and D sections, which are compiled
through a macro to form a structured abstract.

– We believe a LATEX stylesheet provides a suitable input format for providing
authors with a semantic structure to work from.

– We provide the abcde.sty LATEX file as an appendix to this paper.
– Macros are provided to specify Dublin Core Elements, and to print a list of

those that are specified.
– Our section division into Background, Contribution, and Discussion is backed

by a number of emperical studies.
– We aim to work on different incarnations of this format and open it up to

modification and development.

b1 Introduction

The main problem with automatically extracting information from scientific ar-
ticles is that the genre of the scientific publication has developed to be an in-
divisible information unit [1]. The scientific paper is a self-contained narrative,
created anew in each iteration, with specific genre characteristics that minimize
the potential of identification, content reuse and knowledge integration. All this
rhetorical freedom comes at the expense of usability in a computer-centered en-
vironment. The linear narrative was fine when we still read and wrote on paper,

97

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

but the digital environment in which scientists live and work today calls for a
new fundamental unit of communication.

We believe that the best way to present a narrative to a computer is to
let the author explicitly create a rich semantic structure for the article during
writing. As conceptual structures become the central bearer of information, a
set of structured documents can be integrated to form a knowledge network,
or structured package of related knowledge regarding a topic [2]. This can be
seen to form an incarnation of the intelligent data ideal, which the Semantic
Web is meant to enable3. The purpose of our work is to examine such a new
form of structured publications. Semantic Browsers such as PiggyBank4 and
semantic collaborative authoring tools such as Semantic Wiki’s – as presented
at this workshop5 – are paving the infrastructural road for distributed, semantic
communities to communicate. Hopefully, the ABCDE format can be a useful
vehicle on this road.

Article Outline. This paper is organised as follows: in Section c2, the ABCDE
format is described and motivated; in Section c3, the annotation and rendering
of ABCDE articles in LATEX is described. In Section d4, we discuss related work
and in Section d5 some next steps.

The section numbers are consecutive, but are prefixed by a modifier: b, c, or
d. These are meant as a visual cue to reflect whether the section is a part of the
Background, Contribution or Discussion content of the article (described below).
The reason for adding this modifier is to help the reader, but also the author, to
realise which part is which - if desired, the stylesheet can be modified to make
this formatting aspect invisible to humans, and only visible to computers.

c2 The ABCDE Format

We propose an open-standard, widely (re)useable format, the ABCDE format
for proceedings and workshop contributions that can be easily mined, integrated
and consumed by semantic browsers and wikis. It is characterised by marking
the following elements in a document:

Annotations: Each record contains a set of metadata that follows the Dublin
Core standard6. This metadata is included as a part of each paper, to alle-
viate the annoying experience that one encounters when an article is found
floating in cyberspace, without a date or any bibliographic reference infor-
mation. In this sense, the DC qualifiers act as a passport that identifies the
paper’s date and place of birth, for future readers. Minimally required fields
are Title, Creator, Identifier and Date. They can be rendered as a part of
the text (see below) or left only as mark up, and not printed.

3 “The Semantic Web is not so much about intelligent agents, but more about stupid
agents and intelligent data”, Berners-Lee at WWW4, Boston, 1995, personal record.

4 http://simile.mit.edu/piggy-bank/
5 http://www.semwiki.org/
6 http://dublincore.org/documents/dces/

98

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Background, Contribution, Discussion: The material in the main body of
text is classified in one of three types:
– Background, describing the positioning of the research, ongoing issues

and the central research question;
– Contribution, describing the work the authors have done: any concrete

things created, programmed, or investigated;
– Discussion, contains a discussion of the work done, comparison with

other work, and implications and next steps.
This classification must be made explicit in the metadata of the article – for
details, see Section c3 on markup below.

Entities: Throughout the text, entities such as references, personal names,
project websites, etc. are identified inside LATEX as footnotes or references.
The entities can be mined and turned into RDF, where the triple contains
the section of the paper containing the entity, the entity URI, and the type
of link (reference, person, project).
Identifying the contribution type will increase the quality of the property
that can be inferred. For example, the mention of a project website in the
Contribution probably means that the project is one of the core components
of the system described in the paper. On the other hand, a project website
mentioned in the Discussion probably means it is described as a Related
Work.

Core sentences as abstract: There need not be an abstract in an ABCDE
document - instead, the author denotes core sentences within the B,C and D
sections, which are compiled through a macro to form a structured abstract.
Upon retrieval or rendering of the article, these can be extracted to form a
structured abstract of the article. This allows the author to create and modify
statements summarising the article only once, and prevents that an abstract
misrepresents the content of the article. This can easily happen when sections
are deleted from the content, but left in the abstract, as was shown in [3] A
Core summary also enables the implementation of a structured, hyperlinked
abstract, where one can jump directly to the relevant part of the article from
the sentence of interest.

c3 How to semantically mark your paper

We believe a LATEX stylesheet provides a suitable input format for providing
authors with a semantic structure to work from. The abcde.sty style file im-
plements the ABCDE structure for documents typeset with Springer’s LATEX
llncs.cls class file, very commonly used for proceedings publications in com-
puter science. We provide the abcde.sty LATEX file as an appendix to this
paper.

The LATEX style sheet. To create a consistent layout for its proceedings, Springer
makes available to authors and editors its class file llncs.cls7. It provides
7 http://www.springer.com/sgw/cda/frontpage/0,11855,5-164-2-72376-0,00.html

99

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

the common sectioning commands \section{..} through \paragraph{..} and
some theorem-like environments (\begin{theorem} ... \end{theorem}). To
authors, the llncs class ressembles the common article class, but it is richer
in marking the contribution with semantic metadata. Specifically, besides \title
and \author commands, there are a \titlerunning, \subtitle, \email, and
\institute commands.

If your paper was prepared with the llncs LATEX package, to semantically
mark it with the ABCDE format:

– Store the style file abcde.sty in the same folder as the paper;
– Add the line \usepackage{abcde} to your preamble.

Keep in mind that the purpose of semantic marking is mainly to produce meta
information that goes with the document. We have chosen to render some of
the markup as visual elements as well (for example, by prefixing the section
numbers with b, c, or d). This was done for illustration purposes, and the style
sheet can be modified to make the proposed semantic marking invisible in the
printed result.

The command \tableofcontents and the environment abstract remain
available, but you may choose to have the new command \listofcore instead
(or in addition). This will produce a list of sentences that you have marked as
core in the paper.

c3.1 Annotations

Macros are provided to specify Dublin Core Elements, and to print a list of those
that are specified. A Dublin Core element is characterized by a name and a value;
it can be specified in the contribution by the command \dublincore{..}{..}
with the name and value as first and second argument. For example, you can
place \dublincore {publisher} {Creative Commons} anywhere in your doc-
ument; the preamble would be the most logical place. (For more about Creative
Commons, see http://creativecommons.org/about/licenses/.) On the other hand,
\dublincore{subject}{Dublin Core} would be logically placed at the place
where you discuss Dublin Core elements, so that if you decide to remove some
material from your paper, the annotation is removed as well.

The annotations can be just used as metadata without being displayed, but a
list can be printed anywhere in the document using the command \annotations.
For this document, the result would be:
DC Annotations
creator: Anita de Waard , Gerard Tel
title: The ABCDE Format
date: May 4, 2006
subject: ABCDE Format
subject: The llncs.sty LATEX style
publisher: Creative Commons
subject: Dublin Core

100

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Some metadata already available in LATEX-typeset documents is automati-
cally interpreted as a DC element: specifically, the elements creator, title, and
date will be registered as DC elements if they are provided in the preamble with
the usual commands.

c3.2 Background, Contribution, Discussion, and Core

The commands \background, \contribution, and \discussion declare that
the material following it is the Background, the Contribution, or the Discussion
of your document. The semantic marking commands do not replace sectioning
commands, so you still need to name the sections in your document.

The simplest documents have these three parts consecutively, so they will
have just one \background command at the beginning, one \contribution
command after one or two sections, and one \discussion command near the
end. The abcde package allows to switch between the three types more flexibly.
The declaration implied by one of the three commands remains valid until the
next \background, \contribution, or \discussion command. If your docu-
ment contains material that does not fall in one of the three types, precede it
with the \unbcd command.

Important statements can be marked as core sentences using the \core{..}
command; these sentences can be harvested to give an overview of the content of
the paper, with the possibility to jump directly to the relevant part of the paper.
Using core sentences can replace an abstract, as they become part of the “Core
Matter” list produced by the \listofcore command; this command was used
on the first page of this paper. Of course, authors have the possibility of writing
their abstract instead, and have the core sentences only as metadata pointers to
their work.

Markup as core does not change the marked sentence visibly. We found that
sometimes, sentences do not read well when taken out of their context; this
may happen because of anaphors (“This is a result of ...”) or because of a more
complicated entanglement with surrounding sentences. If the phrasing of the
sentence should differ between the text and the Core Matter list, use the form
\core[Sentence1.]{Sentence2.} to print Sentence1. in the document and
have Sentence2. in the Core Matter. For example, “She worked in Africa.” can
be put in the core matter as “Streep worked in Africa.” using

\core[She worked in Africa.]{Streep worked in Africa.}.
The \listofcore command with the optional argument [1] will restrict the

list to core sentences from the Contribution part of your document (and [3] will
extend it to also contain core sentences outside of BCD-marked parts).

c3.3 Entities

Both the Dublin Core elements (Annotation) and the (embedded) Elements,
such as project websites, references, and personal names, can be extracted to
port to an RDF-enabled system.

101

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

The notion of entities was described in Section c2; we are looking to expand
these to the emerging standard RDF–based formats in the future, in collabora-
tion with Semantic Wiki groups.

c3.4 Shortcomings in the package

It is not possible to have complicated macros in a core sentence. The package
was not tested against the various class options of llncs.cls.

The purpose of semantic marking is harvesting meta information, but the
current package also produces a visible effect of the markings. The should be a
possibility to switch the visual effects on and off using a style option [draft];
while writing draft versions, the author can keep an eye one the markings he
already made, but in the final version the semantic marking would only be
harvested, not shown.

d4 Related work

There are many fields of research which offer insights, and important contribu-
tions, concerning the structuring and annotation of scientific texts. In an attempt
to position the ABCDE proposal within this vast landscape, we distinguish two
different dimensions of markup. First the elements marked up, which can be
entities or document structure and second, the time of markup, which can be
during authoring or post-publication. Combined, these describe four categories
of work, which are consecutively discussed.

Annotation phase: post-publication; marked up: entities Leaving aside entity
extraction techniques8, an interesting body of work from the Open Univer-
sity revolves around the creation of a “sensemaking environment” which al-
lows readers to manipulate, order and annotate documents. With ClaiMaker
[4] and ClaimSpotter [5], they aim to create “a system that explicitly model[s]
the rhetorical relations between claims in related papers”. Readers can create
claim-and-relationship triples according to their ontology of rhetorical relations,
to make better sense of the corpus of scientific documents. The triples are iden-
tified outside the documents themselves, to improve understanding.

Annotation phase: during authoring; marked up: entities There are several Se-
mantic Wiki and blogging initiatives which propose to provide semantic anno-
tations and allow for distributed access using marked up entities. For instance,
Karger and Quan [6] propose to use the innate semantics of messages and blogs
to generate semantic markup and utilise it in collaborative (decision-making)
systems. Mika and Klein [7] transform BibTex files into RDF, and use it to con-
nect and disseminate bibliographic information of a research group. And Oren
8 Technically, the huge volumes of work in entity identification and text mining belong

in this category, but since the field is vast and not directly related to our research,
we will omit a discussion here.

102

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

et. al [8] define six dimensions of annotation context, which helps create a faceted
browsing interface to improve navigation through their Wiki environment.

In all three intiatives, the author adds (nominal) markup to improve the
(RDF-based) metadata of the article.

Annotation phase: post-publication; marked up: text structure Simone Teufel
applies a ‘rhetorically defined annotation scheme’, consisting of seven categories
which model prototypical academic argumentation [9]. She first lets a human
annotator apply one of seven ’rhetorical roles’ to specific elements of a text,
and uses this input to train an automatic annotator, which is then used for
automated abstract generation.

Noriko Kando [10] defines a fine-grained ‘text-level structure’, and manually
annotates a corpus of (Japanese) articles on HIV/AIDS with this structure. He
finds a improved results for searching, passage extraction and browsing tasks.

Bayerl [11] adds three types of markup to a corpus of articles in psychology
and linguistics, and then compares the results of the markup. Her three types
are structural, which she bases on Kando’s schema (above); thematic, based on
the Van Dijk Macrostructure concept [12]; and rhetorical, for which she uses
Rhetorical Structure Theory [13].

Annotation phase: during authoring; marked up: text structure In contrast, there
is much less literature on building systems that allow authors of scientific pub-
lications to add markup while creating the text. Quite possibly, this is because
this has traditionally been the domain of the publisher, whose methods are pro-
prietary and not under scientific investigation.

Our section division into Background, Contribution, and Discussion is backed
by a number of emperical studies.

Kando [10] did an analysis of 40 writing manuals, and came up with a text–
level structure where the main headings are Problems, Evidence and Answers.
Harmse and Kircz [14] performed a thorough investigation of a corpus of docu-
ments in atomic physics, and derived a set of modules, of which the three main
ones are Position, Results and Interpretation.

Many journal style guidelines contain a similar division. For example, the
American Institute of Physics9 recommends using Introduction, Main Body and
Conclusion as three essential parts of the paper. In the life sciences, papers are
often explicitly structured in a similar way: for example, the journal Cell10 pro-
scribes the sections Introduction, Results, Discussion (and Experimental Proce-
dures) and BMC Cell Biology11 requires Background, Results, Discussion, Con-
clusions (and Methods). All of these tripartite divisions correspond quite well to
our sections Background, Contribution and Discussion.

The idea of letting authors create markup was motivated in part by the
work of Kircz and Harmsze [14], who identified a set of modular elements for a

9 http://www.aip.org/pubservs/style/4thed
10 http://www.cell.com/misc/page?page=authors
11 http://www.biomedcentral.com/bmccellbiol/ifora/

103

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

corpus of papers in physics, and created authoring instructions for this modular
layout. Work done at Elsevier on the online encyclopedia XPharm12 built on
these explorations, by offering a modular authoring environment, using Word
templates.

Structured abstracts Structured abstracts are used in various settings: in medi-
cine, they are quite common (for instance JAMA13 and the BMJ use them) and
are even a topic of study in themselves [15] — since the quality of abstracts is
sometimes found to be seriously deficient [3].

Van der Tol [16] has proposed to use structured abstracts as a navigational
tool, which could correspond to the ’Core matter’ approach, when expanded
with the right interface.

d5 Next steps

We aim to work on different incarnations of this format and open it up to mod-
ification and development. The point is to offer a flexible structure that can
live on semantic environments such as Semantic Wikis and browsers, such as
Haystack14 or Piggybank15. Ideally, ABCDE papers should be much easier to
mine and integrate. By adding semantic markup of knowledge elements, discov-
ery and integration of information at a structural level is improved.

It is our aim to manually mark up (a subset of) the papers presented to the
SemWiki16 workshop in LATEX with the abcde.sty stylesheet, and open it up
for testing before, during and after the workshop. We actively seek collaboration
with groups working on Semantic Wikis to see if the format is indeed suitable
for transformation to RDF, and how the the metadata can be optimally mined,
stored and visualized. The ideal is to narrow the gap between publications and
annotations, between doing research and talking about it. We mean to practice
what we preach, and will attempt to use the ABCDE format for all relevant con-
ference submissions. Hopefully, with concomitant RDF database and interface
work, we can create a ‘tipping point’17 for the implementation of this format,
and contribute to the creation of a much richer set of conference proceedings in
computer science.

An example of possible developments would include the creation of a confer-
ence program, consisting of ‘core-contribution’ sentences, that link to contribu-
tions, as a quick way to scroll around the papers presented. Another example
would be to mine all the links to a project website and connect them to the
website, linked to the paragraph where the project was mentioned. This would
allow the visualization of related projects, topics and co-authors.
12 http://www.xpharm.com
13 http://jama.ama-assn.org/
14 http://haystack.lcs.mit.edu/
15 http://simile.mit.edu/piggy-bank/
16 http://semwiki.org
17 http://www.gladwell.com/tippingpoint/index.html

104

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

For example, in the OpenAcademia.org project [7], BibTex references are
turned into RDF to allow a connected set of bibliographic references utilising an
Open Source extension of RSS called BuRST18. This rendering could be used to
mine the references of an ABCDE paper, as well — and include the section of
the text where the reference was made, again enhancing the quality of inferrable
information. Again, the division between a paper and a discussion of a reference
begins to blur, and the publication itself can become a (set of) object(s) on a
Semantic Web/Wiki.

Our further work will involve the development of a more detailed model of
scientific publications, and looking at the construction of meaning within scien-
tific documents through argumentation analysis and understanding of discourse
structure. The tension between the arguments or moves and the narrative of
the document as a whole poses an interesting topic of study in terms of both
knowledge modeling and rhetoric/discourse studies. Hopefully, it can also help
create a more legible way to publish science for computer-assisted humans, and
human-assisted computers.

6 Acknowledgement

We wish to thank Simon Pepping of Elsevier for helping think through the
ABCDE format.

References

1. Bazerman, C.: Shaping written knowledge: The genre and activity of the experi-
mental article in science. Madison: University of Wisconsin Press (1988)

2. de Waard, A.: Science publishing and the semantic web, or: Why are you reading
this on paper? European Conference on the Semantic Web 2005, Industry Forum,
Alain Léger ed. (2005)

3. Pitkin, R.M., Branagan, M.A., Burmeister, L.F.: Accuracy of data in abstracts of
published research articles. JAMA 281 (1999) 1110–1111

4. Li, G., Uren, V., Motta, E., Buckingham-Shum, S., Domingue, J.: Claimaker:
Weaving a semantic web of research papers (2002)

5. Shum, S.B., Domingue, J., Motta, E.: Scholarly discourse as computable structure.
In: OHS-6/SC-2. (2000) 120–128

6. Karger, D.R., Quan, D.: What would it mean to blog on the semantic web? Journal
of Web Semantics 3(2) (2005)

7. P. Mika, M. Klein, R.S.: Semantics-based publication management using RSS and
FOAF. In: Proceedings, Semantic Wiki 2006 (Submitted). (2006)

8. Oren, E., Delbru, R., Möller, K., Völkel, M., Handschuh, S.: Annotation and
navigation in semantic wikis. In: SemWiki (ESWC). (2006) Submitted.

9. Teufel, S., Moens, M.: Discourse-level argumentation in scientific articles: Human
and automatic annotation. In Walker, M., ed.: Towards Standards and Tools for
Discourse Tagging: Proceedings of the Workshop. Association for Computational
Linguistics, Somerset, New Jersey (1999) 84–93

18 http://www.cs.vu.nl/ pmika/research/burst/BuRST.html

105

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

10. Kando, N.: Text-level structure of research papers: Implications for text-based
imformation processing systems (1997)

11. Bayerl, P.S.: Methods for the semantic analysis of document markup (2003)
12. Dijk, T.: Macrostructures: An interdisciplinary study of global structures in dis-

course, interaction, and cognition. Lawrence Erlbaum Associates, Hillsdale, New
Jersey (1980)

13. Mann, W.C., Thompson, S.A.: Rhetorical structure theory: Toward a functional
theory of text organization. Text 8(3) (1998) 243–281

14. Kircz, J., Harmsze, F.: Modular scenarios in the electronic age. In: CS-Report
00-20. Proceedings Conferentie Informatiewetenschap 2000. De Doelen Utrecht, 5
april 2000. (2000)

15. Wong, H., Truong, D., Mahamed, A., Davidian, C., Rana, Z., Einarson, T.: Quality
of structured abstracts of original research articles in the british medical journal,
the canadian medical association journal and the journal of the american medical
association: a 10-year follow-up study. Curr Med Res Opin. 21(4) (2005) 467–73

16. van der Tol, M.: Abstracts as orientation tools in a modular environment. Docu-
ment Design 2(1) (2001) 76–88

A The abcde.sty style sheet

%
% File: abcde.sty
% Created 16/03/2006 by Gerard Tel
% Defines semantic annotations following the ABCDE proposal
% for documents already in llncs format.
%
%
% A is for Annotations
% An annotation in the Dublin Core format has two characteristics:
% the NAME of the element and its VALUE.
% A possible third argument is the SCHEME describing the VALUE format.
% Make a Dublin Core element using \dublincore[scheme]{name}{value}
% to write name and value to file dce:
\newcommand\dublincore[3][DEFAULT SCHEME]{
\addcontentsline{dce}{dcelt}{{#2}{#3}}}
%
% The DC annotations can, but need not, be printed in the text:
\def\annotationsname{DC Annotations}
% How to print a name/value combination:
\def\core@nameval#1#2{{\bf #1:} #2}
\def\@dceltline#1#2{% #1 = {name}{value}, #2 = pageno
\par\noindent\core@nameval#1 \par}

\def\l@dcelt{\@dceltline}
% Print the core sentences with \annotations
\newcommand\annotations{%
{\noindent\bf\annotationsname}\par
\@starttoc{dce}}

106

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

%
% Harvesting the annotations
% Grab as much as you can from \maketitle:
\let\orig@maketitle=\maketitle
\renewcommand\maketitle{
% within the DC element, \and and \inst#1 have different meaning
\let\orig@and=\and\def\and{, }
\let\orig@inst=\inst\def\inst##1{}
\dublincore{creator}{\@author}
\def\and{\orig@and}\def\inst{\orig@inst}
\dublincore{title}{\@title}
\dublincore{date}{\@date}

\orig@maketitle}

% There are four BCD-types. Initially it is bcdu (undefined)
\newcommand{\bcd@type}{bcdu}
% The \background, \contribution, and \discussion commands will
% 1. Change the section numbering by prefixing a letter
% 2. Change the abs entries by changing \bcd@type
\newcommand{\bcd@swap}[2]{
\def\thesection{#1\arabic{section}}
\def\thefigure{#1\arabic{figure}}
\def\bcd@type{#2}}

\newcommand{\background}{\bcd@swap{b}{back}}
\newcommand{\contribution}{\bcd@swap{c}{cont}}
\newcommand{\discussion}{\bcd@swap{d}{disc}}
\newcommand{\unbcd}{\bcd@swap{}{bcdu}}
%
%
% The command \core{TEXT} will print TEXT and save it in the file
% basename.abs as a contentsline
% Two args, first is optional with default second
% Print argument normally in text:
\newcommand{\core}[2][\undefined]{
\ifx\undefined#1#2\else#1\fi
\addcontentsline{abs}{\bcd@type}{#2}}
\def\listofcorename{Core Matter}
\def\@coreline#1#2#3{% #1: importance, #2: text, #3: Page no
\ifnum#1>\c@coredepth
\else \item#2\vskip 3\p@\fi}

\def\l@bcdu{\@coreline{3}} % Relatively unimportant
\def\l@back{\@coreline{2}} % Moderately important
\def\l@cont{\@coreline{1}} % Important
\def\l@disc{\@coreline{2}} % Moderately important
% Print the core sentences with \listofcore[i],

107

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

% Where i=1 prints only contribution core, 2 prints B&D as
% well, and i=3 prints "unlabeled" core.
\newcommand\listofcore[1][2]{%
\def\c@coredepth{#1}
\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn\fi
\section*{\listofcorename\@mkboth{{\listofcorename}}{{\listofcorename}}}
\begin{itemize}\@starttoc{abs}\end{itemize}
\if@restonecol\twocolumn\fi}

108

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Learning with Semantic Wikis

Sebastian Schaffert, Diana Bischof, Tobias Bürger, Andreas Gruber, Wolf
Hilzensauer, and Sandra Schaffert

Salzburg Research Forschungsgesellschaft
Jakob Haringer Str. 5/II, A-5020 Salzburg, Austria

Abstract. The knowledge society requires life-long learning and flexible
learning environments that allow learners to learn whenever they have
time, whereever they are, and according to their own needs and back-
ground knowledge. In this article, we investigate how Semantic Wikis
– a combination of Wiki and Semantic Web technology – can support
learners in such flexible learning environments. We first summarise com-
mon features of Wikis and Semantic Wikis and then describe different
aspects of Semantic Wikis for learning. We also introduce our Semantic
Wiki system called IkeWiki and show why it is particularly promising as
a learning tool.

1 Introduction

Recently, many different Semantic Wikis have been described in the literature (cf.
e.g. Platypus [1], Semantic MediaWiki [2], SemWiki [3], SemperWiki [4], Wik-
SAR [5], IkeWiki [6,7]). All or most of these articles target knowledge manage-
ment or aim at enhancing the Wiki “experience” by improved navigation, brows-
ing, and searching.

Fig. 1. ”Schulmeister von
Esslingen”: traditional teacher-
centred learning

In this article, we aim to investigate another
area where Semantic Wikis might play an im-
portant role: learning. A possible separation
from knowledge management is that whereas
knowledge management focusses on the result,
learning focusses on the process that leads to
the result.

In our dynamic society, learning plays
an increasingly important role, and the way
learning is perceived has changed significantly.
Whereas traditionally learning was limited to
school and university, it is now seen as a life-
long process (“life-long learning”) requiring
learners to constantly update and adapt their
knowledge to new developments [8]. Whereas
school and university teaching often used to
be rather transfer of information from the
teacher to the students without much student

109

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

interaction (Fig. 1), learning in modern learning theory is considered an ac-
tive process where learners participate and teachers are merely coaches in the
learners’ learning process. And whereas individual skills used to be in the centre
of traditional learning processes, cooperative and group learning are becoming
more and more important as problems are usually solved by teams and not by
individuals.

Such learning requires more flexible learning environments where learners
can develop their skills as needed (“on-demand learning”) and when they have
time (“just-in-time learning”). This, in turn, requires that content can be ac-
cessed, authored, reused, and combined easily. Social Software (i.e. Weblogs,
Wikis, ePortfolios, Instant Messaging) and Semantic Web technology could play
an important role in such learning environments. Where Social Software gives
users freedom to choose their own processes and supports the collaboration of
people anytime, anywhere, Semantic Web technology gives the possibility to
structure information for easy retrieval, reuse, and exchange between different
systems and tools.

In this article, we focus on a very specific technology that combines Social
Software and the Semantic Web: Semantic Wikis. In Section 2, we sketch the
development from traditional Wikis to Semantic Wikis. Section 3 summarises
the current usage of Wikis in learning and investigates how Semantic Wikis can
be beneficial. We then introduce our own Semantic Wiki called IkeWiki, which
we believe is particularly well suited for learning (Section 4). We conclude with
an overview over related work (Section 5) and perspectives for further research
(Section 6).

2 From Wikis to Semantic Wikis

2.1 Traditional Wiki Systems

“Wiki” is the short form for “WikiWikiWeb” and is derived from the Hawaiian
expression “wiki wiki” meaning “fast” or “quick”. A Wiki is essentially a collec-
tion of Web sites connected via hyperlinks. While there is a wide range of Wiki
systems available (e.g. MediaWiki, MoinMoin, TWiki) with different purposes
and audiences, all of them share the following common properties:

Editing via Browser. Content is usually edited via a simple browser interface
that can be used without installing any additional (expensive) software. This
makes editing simple and allows to modify pages from everywhere in the world
with only minimal technical requirements. As a consequence, content creators
can access and update the Wiki from wherever they are, e.g. at work, at home,
at conferences, nowadays even while travelling.

Simplified Wiki Syntax. Content is usually expressed in a simplified hyper-
text format (“Wiki syntax”) that is much easier to use for non-technical users
than e.g. HTML. Formatting thus does not require knowledge of HTML.

110

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Rollback Mechanism. Changes to the content of a Wiki are versioned each
time they are stored, i.e. previous versions of pages are kept. This allows to revert
to earlier versions of a page e.g. in case important parts have been accidentally
deleted or undesirable modifications have been made by someone else. Also,
most Wiki systems allow to compare two versions of a page, making it possible
to identify changes between edits quickly.

Strong Linking. Pages in a Wiki are usually strongly linked with each other
using hyperlinks. The reason for this is that the simplified Wiki syntax makes
it very easy to define a link to another page in the Wiki. For example, in many
Wikis a link is defined by enclosing a word in square brackets, or by using a
so-called “CamelCase” where a word contains several upper-case letters. Links
to non-existing pages are usually rendered in a different colour. If a user clicks
on such a link, the system redirects him to a view where he can create the
non-existing page. In many Wikis, this is even the only way to create a page.

Links in a Wiki are the most important tool for navigation. Therefore, many
systems allow not only to follow links in the direction they are defined but also
in reverse direction (“back-links”).

Unrestricted Access. In most Wiki systems, access is completely unrestricted
– i.e. anyone can correct, modify, complete, or even delete anything. While this
might seem strange, and even dangerous, from a traditional perspective, practice
shows that the system works: on the one hand, ill-meaning users are rather
rare; on the other hand, all changes can easily be undone using the rollback
mechanism. Note that some Wikis still allow to apply further access restrictions
using users and groups as found in traditional content management systems.

Collaborative Editing. The above-mentioned properties combined make Wikis
an ideal tool for collaborative editing. As soon as someone creates content, others
can contribute to it, extend it, correct it, etc. Many Wiki systems provide further
support for collaborative editing, e.g. by means of discussion forums, summaries
of changes, and list of last updates.

Unlike other groupware or content management tools, a Wiki gives users almost
complete freedom over the content development process without rigid workflow,
access restrictions, or predefined structures. Users need not adapt their practice
to the ”dictate of the system”, but can allow their own practice to define the
structure. This is important, because different domains often have – or even
require – different kinds of workflow.

As a recent survey on the popular technology site Slashdot showed1, Wiki
systems are currently used for a wide variety of purposes, including:

– encyclopaedia systems: collect information in a certain area (e.g. Wikitravel)
or unrestricted (e.g. Wikipedia) in a community effort with contributions
from a wide range of users

1 http://ask.slashdot.org/article.pl?sid=06/01/21/1958244

111

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

– software development: collaboratively create documentation, collect ideas,
track bugs; most of today’s high-profile Open Source projects (e.g. Apache,
Mozilla, OpenOffice) use Wikis for coordination

– project knowledge management: project tracking, brainstorming and exchange
of ideas, coordination of activities, agenda tool for collecting topics of meet-
ings, project notes repository, knowledge base, staff directory

– personal knowledge management: sketchpad to collect and elaborate personal
ideas, addresses, dates, tasks, bookmarks, etc. [3]

– collaborative writing: authors work collectively on a writing (short story,
novel, etc.) which is immediately accessible by readers for their enjoyment

– CMS: collect and connect content, simple publication tool

2.2 Semantic Wiki Systems

A “Semantic Wiki” extends a Wiki by “semantic technologies” like RDF, OWL,
Topic Maps, or Conceptual Graphs. The main idea is to make the inherent
structure of a Wiki – given by the strong linking between pages – accessible to
machines (agents, services) beyond mere navigation. This is generally done by
annotating existing navigational links with symbols that describe their meaning.
A link from Mozart to Salzburg could e.g. be annotated with lived in or born in.

Such annotations are useful for many purposes, e.g. for enhanced presentation
by displaying contextual information, enhanced navigation by giving easy access
to relevant related information, and enhanced “semantic” search that respects
the context in addition to the content. Note that presentation, navigation, and
search can be done in a rather generic manner, but often profit greatly from an
adaptation to the represented context.

Semantic Wikis exist in many different flavours (e.g. Semantic MediaWiki
[2], SemWiki [3], IkeWiki [7], PlatypusWiki [1], SemperWiki [4]). Some systems
are still primarily focused on the page content and see annotations as optional
“added value”. For others, the semantic annotations are in the foreground and
sometimes even more important than the actual content. Different systems serve
different purposes, e.g. extending existing content by annotations to allow for
better navigation, collaborative ontology engineering, etc. Commonly found fea-
tures are:

Typing/Annotating of Links. Virtually all Semantic Wikis allow to annotate
links by giving them certain types. The idea behind this is that every link carries
meaning beyond mere navigation, as given in the example in the beginning of this
section. The way link annotations are edited differs from system to system. Some
Semantic Wikis include the annotations as part of the Wiki syntax (e.g. Semantic
MediaWiki [2]), while others provide a separate editor for adding annotations
(e.g. IkeWiki).

Context-Aware Presentation. Many Semantic Wikis can change the way
content is presented based on semantic annotations. This can include enriching

112

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

pages by displaying of semantically related pages in a separate link box, display-
ing of information that can be derived from the underlying knowledge base (e.g.
a box with a graphical tree presentation, license information), or even rendering
its content of a page in a different manner that is more suitable for the context
(e.g. multimedia content vs. text content).

Semantic Navigation. Whereas a traditional Wiki only allows to follow a link,
a semantic Wiki offers additional information on the relation the link describes.
Such information can be used to offer additional or more sophisticated naviga-
tion. For instance, links are more independent from the textual context and can
be displayed e.g. in a separate “related information” box. The page describing
Mozart could e.g. offer a separate box with references categorised by “lived in”,
“composed”, etc.

Semantic Search. Most Semantic Wikis allow a “semantic search” on the un-
derlying knowledge base. Usually, queries are expressed in the language SPARQL,
an RDF query language recently proposed by the W3C. Using “semantic search”,
users can ask queries like “retrieve all pieces composed by Mozart” or “retrieve
all documents where the license permits derivative works”.

Reasoning Support. Reasoning means deriving additional, implicit informa-
tion from the facts entered into the system using predefined or user-defined rules
in the knowledge base. For example, from the fact that “Mozart” composed “Die
Zauberflöte”, a system capable of reasoning could deduce that “Mozart” is a
“Composer”. Although reasoning is an important feature, it is only supported
by few Wikis. Reasons might be that it is time-consuming, memory intensive,
and can yield results that are not expected and/or traceable by the user.

3 Learning with Semantic Wikis

In this section, we characterise the potential and relevance of traditional and
Semantic Wikis in learning environments. Furthermore we aim to give a short
overview about the possibilities and advantages of Wikis in practical use. The
use of Wikis in learning environments has only recently attracted attention and
is rapidly gaining interest. We begin this section with a brief introduction into
learning concepts aimed at the technical reader. We then introduce the current
use of (traditional) Wikis in learning environments. We conclude with a discus-
sion of possible benefits of Semantic Wikis over traditional Wikis.

3.1 Learning Concepts

Everyone has an informal notion of what learning “means”, but different disci-
plines and traditions have developed their own understandings and perspectives.
Before describing the potential of Wikis for learning, we briefly summarise the
concepts that have been developed in recent years and are now widely accepted.

113

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Different Perspectives. Learning is a natural, birth-given ability. Psycholo-
gists define learning as “a process that results in relatively consistent change
in behaviour, or behaviour potential, and is based on experience” [9]. From the
neuro-scientific and cognitive perspective, learning is a process of modification
of cognitive structures (thinking). In the pedagogical perspective, these changes
should be “good” in a normative way: after learning, the learner should have
improved his skills or competencies, extended or corrected his knowledge, etc.
Philosophers discuss the epistemological preconditions for knowledge and learn-
ing.

Learning: State-of-the-Art. In the understanding developed in the last 20
years, learning means to construct one’s own understanding of the world, i.e. (in a
cognitivist view) we interpret new information with the help of prior knowledge
and experience. Learners interact with the environment, select and transform
information, and construct their own knowledge. Learning is (in a constructivist
view) a recursive, self-referential process and needs the stimulus and challenge
through others [10].

It is nowadays commonly accepted that the possibilities of teaching are
limited: depending on prior knowledge, biography, learning abilities, motiva-
tion, emotional arousal, interest, understanding, etc., pedagogical goals might
be achieved, but success is not guaranteed. Teachers can not directly transfer
their knowledge. Instead, they should act as facilitators, encouraging students
to discover principles on their own.

3.2 Wikis in Self-directed Learning

Most learning takes place outside the formal boundaries of a class room or learn-
ing system. We learn e.g. by searching for information on the Internet, by read-
ing newspapers, books, articles, by trying to solve problems on the job, etc.
Such learning is called self-directed or informal learning. Malcolm Knowles [11]
describes self-directed learning as a process “in which individuals take the ini-
tiative, with or without the help of others, in diagnosing their learning needs,
formulating learning goals, identifying human and material resources for learn-
ing, choosing and implementing appropriate learning strategies, and evaluating
learning outcomes” (p. 18).

Reflection. Writing text requires taking different views and perspectives on
knowledge in order to make it explicit and understandable for readers, e.g. by
integrating with contextual information and telling “a story”. This results in
additional reflection about the knowledge and thus learning. While this aspect
is not specific to Wikis, the possibility to repeatedly update the content and
structure gives success quickly and allows refinements later on. Furthermore,
Wikis support the constructive process by allowing to embed content in a larger
context using hyperlinks, and by considerably simplifying the restructuring of
content. The hypertext structure of Wikis can also reflect and promote network
thinking of the learners.

114

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Stimulative Nature. A significant difference between a normal HTML page
and a Wiki page is the possibility to directly change content. Even more so, most
Wikis invite readers to edit the content. This possibility – when communicated
rightly to readers – challenges the readers to question and rethink some or even
all the content of a page (“is the author right? – what is my view? – is something
missing? – can the text be improved?”), and thus mobilises critical thinking,
which in turn initiates learning. Also, the dissociation from others and their
perspectives on a topic is part of the (constructivist) learning process (“learning
as experience of differences”, [10]).

Additionally, as links to non-existent pages are usually rendered differently,
Wikis also challenge readers to contribute to pages that do not yet exist, leading
to active construction of knowledge and additional reflection about the content.

Personal Learning and Knowledge Tool. Self-directed learning also in-
volves personal knowledge management: taking personal notes, collecting refer-
ences, ideas, etc. The usefulness of Wikis for knowledge management has been
investigated [3,12], so we do not go into details here.

3.3 Wikis in Educational Environments

Formal Learning describes learning activities that happen in an organised way,
e.g. in schools, in university, in adult education centres, etc. Wikis can be used in
different ways in formal learning situations. One use is as a knowledge repository
for students to search in (see above). More interesting, however, is the use of an
initially “empty” Wiki that is filled by the students themselves.

Wikis can play an important role both in blended learning (which combines
traditional presence learning with technology-supported learning) and in “pure”
eLearning. A particular advantage over other tools is that – prepared with the
knowledge about a Web browser – the necessary technical knowledge can be
acquired quickly. In the following, we describe different approaches to modelling
the learning environment and show how Wikis can be supportive within these
approaches.

Cognitive Apprenticeship [13] is based on the knowledge and skill trans-
fer in the traditional master-apprentice education. In cognitive apprenticeship,
learning is always situated in the context and happens via interaction with the
environment and other individuals. The apprentice learns by working closely
together with the master on real-world problems of the respective craft. The
master acts as an archetype for the learner by doing work instead of trying to
make explicit his knowledge.

Wikis provide an important benefit in this learning model: their collaborative
features allow teachers and students to work closely together on a topic, e.g.
writing a text or article, collecting information on a topic, etc. – regardless of
the whereabouts of students and teachers. They thus aid in an important learning
task of the emerging knowledge society.

115

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Cooperative Learning differs from traditional curriculum-driven education in
that students work in purposely heterogeneous groups to support the learning of
their individuals. Important aspects of cooperative learning are positive interde-
pendence of group members, individual accountability, face-to-face interaction,
appropriate use of collaborative skills, and regular self-assessment of team func-
tioning [14]. In cooperative learning, learners gain a realistic self-perception by
looking at the other group members.

The collaborative features (collaborative editing, versioning, discussion next
to the content) of Wikis make them particularly well-suited for cooperative learn-
ing environments, with no corresponding tool in traditional learning. Whereas
collaborative working with twenty people using traditional methods – e.g. a chalk
board, brainstorming sessions, etc. – is not viable because it takes a lot of time,
is tiresome, and causes many learners to withdraw, collaborative working us-
ing a Wiki can easily function with hundreds or even thousands of people (cf.
Wikipedia). Wikis are already used for a number of different tasks in cooperative
learning. Examples are:

Communities of Practice are groups of persons pursuing common goals and in-
teracting with other individuals [15]. In communities of practice, learning is a
collaborative process of a group. Rather than looking to learning as the acqui-
sition of certain forms of knowledge, communities of practice define learning as
a situated process through the participation in the community. In order to fully
participate in the community, members need to adopt to the communities shared
knowledge and practices.

Wikis can serve as a knowledge platform for a community of practice where
members of the community can share their knowledge with the group, put up
interesting pieces of information, work together, discuss issues, etc. New members
can use the Wiki for learning about the community and its practices. In a sense,
even Wikis like Wikipedia can be considered as (large) communities of practice.

Project-Based Learning. Projects play a large role in the context of educational
environments. Whether project weeks, project days, class-independent annual
topics or smaller projects, the project method applies nearly everywhere. Project
classes correspond to the general education programme of schools. The project
method is seen as a way to reach the education goals. Wikis can represent – in
case a project encloses many individuals or several classes – a very effective tool
for project planning and documentation.2

Collaborative Story Writing. Wikis give learners completely new possibilities
for creative writing. A Wiki can be seen as an interactive writing book, where
students write together on an essay or story. The story does not necessarily have
only one end; it can branch out like a tree or even graph with a lot of different

2 Example: Planning of a musical project: http://www.prowiki2.org/

glarnerschulen/wiki.cgi?OrdnerMusical

116

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

paths and ends. Talented students also have the possibility of supplementing
illustrative figures or photographs to the story.3

Interdisciplinary and Intercultural Learning. The collaboration features and in-
dependence of Wikis from the actual whereabouts of the learners make them well-
suited for interdisciplinary and intercultural learning, bringing together learners
with different cultural and educational backgrounds. For example, religion can
be discussed among christian, muslim, and hindu students, languages can be
learned from other students with different mother tongues, etc.

3.4 Wikis as ePortfolios

Learning in general implies two different processes: on the one hand, one has to
collect artefacts and pieces of information; on the other hand, these artefacts need
to be integrated with ones existing knowledge space by “reflecting” the learning
/ knowledge building process on a meta-level. The sum of documentation and
reflection illustrates the learning process as a whole and can therefore be used
as an process oriented ePortfolio.

ePortfolios in general are a “structured personal digital collection of infor-
mation describing and illustrating a person’s learning, career, experience, and
achievements.”4 Depending on the purpose, ePortfolios cover 3 major processes:
collection and presentation (presentation portfolio), reflection and communica-
tion (learning- and process portfolio), and evaluation (assessment portfolio).

Wikis (in a learning context) can on the one hand obviously be used as a
supportive technology for collection and presentation processes. These processes
can support both, self-directed learning or community learning. On the other
hand, reflection and communication purposes are covered by Wikis in terms of
using the history function and the discussion function.

History function: a community, working together on one topic might inves-
tigate on a similar topic and find different aspects of an issue. By editing earlier
versions of an item or a topic on the Wiki, the development process can be
documented and reconstructed easily by the system itself. By using the discus-
sion feature of a Wiki, the process of collaborative content generation combines
the collection and presentation issues of ePortfolio work, the discussion function
coveres the reflection and communication aspects.

The value of ePortfolios can be seen not only in the collection and presen-
tation of artefacts. Too much information gets lost by only reproducing results
of learning processes without documenting the meta-level, described in the de-
velopment process in a holistic way. Wikis can support this process, but should
be part of a bigger framework, dealing with personnel development / learning
documentation and reflectional processes of this documentation.

3 Example: Creative and Cooperative Writing with Wiki – Geschichtenwald: http:
//www.wikiservice.at/buecher/wiki.cgi?GeschichtenWald

4 Definition by National Learning Infrastructure Initiative of EDUCAUSE, 2003

117

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3.5 Possible Benefits of Semantic Wikis

In the following, we describe a number of benefits that Semantic Wikis may
provide over traditional Wikis in the context of learning that go beyond those
frequently mentioned for knowledge management (cf. e.g. [3,7]). The benefits are
categorised in Learning Process and Content Creation and Reuse.

Learning Process. Semantic Wikis can participate in many ways in a learning
process. In the following, we mention three possibilities:

Semantic Annotations lead to Reflection about Knowledge. The possibility to
add semantic annotations in a Semantic Wiki and create a background model
has a stimulating effect for reflecting about the learning content. Constructing
a formal model requires structuring the content thoroughly. Hence, the learner
needs to reconsider and possibly reorganise the content in the Wiki, leading to
improved reflection about the content. The result of structuring the content and
the changes history can additionally be used by the coach to assess the learner’s
progress.5

Sharing of Perspectives. Semantic Wikis also offer the possibility to share formal
models between teachers and students and among students, and to participate
in the collaborative building of a common model within a group. Sharing of
knowledge gives learners the possibility to benefit from different perspectives
stemming from different cultural, social, or educational backgrounds. This is
particularly true in an open learning environment like the Web.

Reasoning Provides Additional Insight. Reasoning and inference capabilities of
Semantic Web technologies can lead to unexpected interesting results that pro-
vide additional insight without requiring active search by the user. For example,
a link from Die Zauberflöte to Mozart annotated with composedBy could in-
stantly lead the user to the information that Eine Kleine Nachtmusik was also
composed by Mozart, a piece of information possibly entered by someone else.

Content Creation and Reuse. Learning comprises not only the actual learn-
ing process but also the actual outcome of the learning process. This can include
content objects represented traditionally as text oriented document (e.g. thesis,
project report, paper, article), enriched with figures, images and some hierarchi-
cal structure.

Typing of links adds value to content creation process. Apart from its collab-
orative aspects, the hypertext and the Wiki paradigm added another layer of
“structure”: multiple paths/links within documents. However, these entities are
fairly complex to maintain within a learning process, because the semantics of

5 Note that currently existing Semantic Wikis do not support versioning of metadata.

118

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

the paths/links are not explicit. Semantic technologies support the formalisa-
tion of links by allowing to type objects and associations between them. This
adds an additional dimension to the content creation process and allows further
exploitation.

Reusability of Learning Content. Using Semantic Web technologies, learning con-
tent can be annotated using standardised knowledge models like IMS Learning
Design6 or Learning Objects Metadata (LOM)7. Semantically annotated content
allows the designers of a curriculum to more easily reuse and combine existing
content to create new course material. A Semantic Wiki provides an intelligent
way for content creators to add and use such metadata.

Interoperability. A “learning environment” consists of a plethora of “tools” rang-
ing from traditional classrooms and chalk boards over ePortfolios, Weblogs, and
Wikis to sophisticated learning management systems. Naturally, there is a desire
that such tools are widely interoperable to share information between them. The
Semantic Web technologies used by Semantic Wikis provide the chance to re-use
significant parts of the gained knowledge model within other applications, e.g. to
export a specific knowledge model built for within the Wiki as the background
model for the own competency portfolio within a specific domain, or to interact
with a learning management system.

4 IkeWiki

A number of Semantic Wiki systems are currently under development.8 In the
following, we introduce our own system called IkeWiki. We believe that IkeWiki
has many of the features desirable for Wiki use in learning environments.

4.1 Design Principles

Although now also considered in different settings, IkeWiki has originally been
developed as a prototype tool to support knowledge workers in collaboratively
formalising knowledge [7]. Although holding in other areas as well, IkeWiki’s
design principles are influenced by this idea:

Easy to Use, Interactive Interface. IkeWikis interface (Figure 2) resembles
as closely as possible the Wikipedia interface which people are familiar with.
Furthermore, IkeWiki offers an interactive WYSIWYG9 editor (using AJAX10

6 http://www.imsglobal.org/learningdesign/index.html
7 http://ltsc.ieee.org/wg12/
8 http://wiki.ontoworld.org/index.php/Semantic Wiki State Of The Art
9 WYSIWYG: “what you see is what you get”

10 AJAX: “asynchronous JavaScript and XML” – used for interactive web applications

119

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

technology to communicate with the server backend) in addition to the tra-
ditional structured text editor, as WYSIWYG editors generally have a better
acceptance among non-technical users.

The WYSIWYG editor also supports interactive typing of links and re-
sources. The interface is designed in a way that users are invited to annotate
their content with semantic annotations, instead of hiding them in the syntax.
We consider this an important aspect, particularly in learning environments.

Immediate Exploitation of Semantic Annotations. An important mo-
tivating aspect of Wiki systems is that content is immediately available to the
public when a user clicks on “save”. Similarly, IkeWiki allows immediate exploita-
tion of semantic annotations for enhanced editing, presentation, navigation, and
searching, even if the knowledge base is not yet fully formalised.

Support for Different Levels of Experience. IkeWiki is designed as a tool
for collaborative working. In such a process, it is common that non-technical peo-
ple (e.g. learners) work together with experts (e.g. teachers). Therefore, IkeWiki
supports all levels of experience. This means that certain advanced functionali-
ties can be hidden from novice users but are available to experienced users.

Support for Different Levels of Formalisation. Different application areas
need different levels of formalisation [7], and as Jim Hendler said:11 “a little
semantics goes a long way”. One of the goals of IkeWiki is thus to support
formalisation of knowledge all the way from informal texts to formal ontologies.
Also, this means that parts of the knowledge base might be more formalised
than others, and that formal knowledge is in constant evolution.

Support for Reasoning. Unlike most other Semantic Wikis, IkeWiki supports
reasoning on the knowledge base. Reasoning is important as it allows to derive
knowledge that is not explicit; it is thus the true power of Semantic Web tech-
nology. At the moment, IkeWiki supports only OWL-RDFS reasoning, but an
extension with a user-accessible rule engine is planned. As mentioned earlier,
reasoning can be an important supportive service in learning environments.

Compatibility with Semantic Web standards. To be able to exchange
data with other applications (e.g. other Wikis, learning management systems,
ePortfolio systems, Web services), IkeWiki is based on existing Semantic Web
standards like XML, RDF and OWL. Note that other knowledge representation
formats like conceptual graphs are conceivable but not investigated at this point.

11 as conference chair in the opening speech of the 2003 International Semantic Web
Conference; Sanibel Island, Florida, USA, October 2003

120

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 2. Sample page in IkeWiki; type information below the title (1); incoming
and outgoing links are displayed in a box on the right (2); context-dependent
rendering: automatically generated taxonomy box (3); interactive editing (4).

Compatibility with Wikipedia/MediaWiki. A significant amount of infor-
mation is available in Wikipedia. To reuse it, IkeWiki supports the Wikipedia
syntax. This allows users to import existing content from Wikipedia into IkeWiki
(e.g. via simple copy and paste) and directly begin working.

4.2 Interface

IkeWiki uses a purely browser-based interface (cf. Figure 2). The current im-
plementation only supports the Mozilla browser family due to its standards
compliance and free availability.

Page View. A sample page view is shown in Figure 2. In the figure, you can
see a sample article (copied from Wikipedia) about the “Bilberry”. Type infor-
mation is shown below the page title (1). Links to (semantically) related pages
are displayed in a separate “references box” on the right hand side (2). The
taxonomy box (3) showing the biological classification of the described plant is
automatically generated from existing semantic annotations (i.e. Bilberry has-
Genus Vaccinium) and is an example for context adaptation. Finally, (4) shows
interactive typing of links using AJAX technology.

Content Editor. The content editor is available in two flavours: as a traditional
structured text editor and as a WYSIWYG editor. The structured text editor
is aimed at expert users that are familiar with other wiki systems, and allows
to directly copy content from Wikipedia. The WYSIWYG editor is aimed at
novice users creating new content. The WYSIWYG editor interacts with the

121

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

server backend: links are automatically recognised and verified, and semantic
annotations can be done directly in the editor (as also shown in Figure 2, (4)).

Semantic Annotations Editor. Semantic annotations are separated into
three editors: the metadata editor allows to fill in textual metadata related to a
page (like Dublin Core metadata or RDF comments). The type editor allows to
associate one or more of the types available in the system with a page. The link
editor allows to annotate outgoing and incoming links with type information. In
the editors, available annotations are determined by the reasoner based on the
page and link types; for example, if a link from “Mozart” to “Die Zauberflöte”
is annotated by “composerOf”, the system will automatically associate the type
“Composer” with the page describing “Mozart”.

5 Related Work

A number of studies investigating the use of (traditional) wikis in learning envi-
ronments is available. A good survey over the use of wikis in teaching is given in
[16]. A recent study by Beat Döbeli Honegger [17] investigated the use of wikis
in schools and provided interesting results regarding the stimulative nature of
wikis. The study conducted a project to create hypertext on Greek mythology
and observed the effects on student learning. A visualisation of the content was
done via TouchGraph technology. The EduCause fact sheet [18] further provides
a very concise overview over the potential of wikis for learning.

To the best of our knowledge, this article is the first to consider Semantic
Wikis as a tool for learning, as existing related work is mostly concerned with
knowledge management [3,5] and knowledge engineering [7].

6 Perspectives and Conclusion

We investigated the use of Semantic Wikis as a tool in learning environments.
The potential of using wikis, especially Semantic Wikis, in learning environments
appears to be significant, but has not yet been proven in real learning environ-
ments and – although well-founded – only reflects our own considerations. In
the near future, we will therefore develop learning scenarios involving Semantic
Wikis and try them in real-world settings. In addition, we will investigate the
possible integration of Semantic Wikis with other learning tools like ePortfolios
and learning management systems.

The prototype system IkeWiki also presented in this article is under active
development. Plans for the near future are a more efficient reasoning support
and improvements of the user interface. On the long term, we would like to
implement a Semantic Wiki system with enhanced collaboration and editing
features like synchronous editing, improved WYSIWYG editing, and a tighter
integration of content and metadata editing.

IkeWiki is available as OpenSource software licensed under the GNU General
Public License at http://ikewiki.salzburgresearch.at.

122

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

References

1. Tazzoli, R., Castagna, P., Campanini, S.E.: Towards a Semantic WikiWikiWeb.
In: 3rd International Semantic Web Conference (ISWC2004), Hiroshima, Japan
(2004)

2. Krötsch, M., Vrandečić, D., Völkel, M.: Wikipedia and the Semantic Web - The
Missing Links. In: Proceedings of the WikiMania2005. (2005)

3. Völkel, M., Oren, E.: Personal Knowledge Management with Semantic Wikis.
(2006)

4. Oren, E.: SemperWiki: a semantic personal Wiki. In: 1st Workshop on The Se-
mantic Desktop, colocated with ISWC05, Galway, Ireland (2005)

5. Aumueller, D., Auer, S.: Towards a Semantic Wiki Experience – Desktop Inte-
gration and Interactivity in WikSAR. In: Semantic Desktop Workshop 2005 at
ISWC’05, Galway, Ireland (2005)

6. Schaffert, S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Management.
(2006)

7. Schaffert, S., Gruber, A., Westenthaler, R.: A Semantic Wiki for Collaborative
Knowledge Formation. In: Semantics 2005, Vienna, Austria (2005)

8. Reding, V., Diamantopoulou, A.: Making a European Area of Lifelong Learning a
Reality. Communication from the European Commission (2001)

9. Zimbardo, P., Gerrig, R.: Psychology and Life. 14th edn. HarperCollins, New York
(1996)

10. Siebert, H.: Konstruktivismus. Konsequenzen für Bildungsmanagement und Sem-
inargestaltung. Deutsches Institut für Erwachsenenbildung (1998)

11. Knowles, M.S.: Self-Directed Learning. A guide for learners and teachers. Engle-
wood Cliffs: Prentice Hall, Cambridge (1975)

12. Wagner, C.: Wiki: A Technology for Conversational Knowledge Management and
Group Collaboration. Communications of the Association for Information Systems
13 (2004)

13. Collins, A., Brown, J.S., Newman, S.E.: Cognitive Apprenticeship: Teaching the
Crafts of Reading, Writing, and Mathematics. In Resnick, L.B., ed.: Knowing,
Learning, and Instruction. Essays in Honor of Robert Glaser. Lawrence Erlbaum
Associates, New Jersey (1989) 453–494

14. Johnson, R.T., Johnson, D.W.: An Overview of Cooperative Learning. In Thou-
sand, J., Villa, A., Nevin, A., eds.: Creativity and Collaborative Learning. Brookes
Press, Baltimore (1994)

15. Wenger, E.: Communities of Practice. Learning as a social system. Systems Thinker
(1998)

16. Lamb, B.: Wide Open Spaces: Wikis, Ready or Not. EDUCAUSE review (2004)
17. Honegger, B.D.: Wikis – a rapidly growing phenomenon in the german-speaking

school community. In: International Symposium on Wikis (WikiSym05), San
Diego, USA (2005)

18. EduCause Learning Initiative: 7 things you should know about . . .Wikis. (2005)

123

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Harvesting Wiki Consensus - Using Wikipedia Entries
as Ontology Elements

Martin Hepp1,2, Daniel Bachlechner1, Katharina Siorpaes1

1Digital Enterprise Research Institute (DERI), University of Innsbruck
2Florida Gulf Coast University, Fort Myers, FL, USA

{martin.hepp|daniel.bachlechner|katharina.siorpaes}@deri.org

Abstract. One major obstacle towards adding machine-readable annotation to
existing Web content is the lack of domain ontologies. While FOAF and Dublin
Core are popular means for expressing relationships between Web resources
and between Web resources and literal values, we widely lack unique identifiers
for common concepts and instances. Also, most available ontologies have a
very weak community grounding in the sense that they are designed by single
individuals or small groups of individuals, while the majority of potential users
is not involved in the process of proposing new ontology elements or achieving
consensus. This is in sharp contrast to natural language where the evolution of
the vocabulary is under the control of the user community. At the same time,
we can observe that, within Wiki communities, especially Wikipedia, a large
number of users is able to create comprehensive domain representations in the
sense of unique, machine-feasible, identifiers and concept definitions which are
sufficient for humans to grasp the intension of the concepts. The English
version of Wikipedia contains now more than one million entries and thus the
same amount of URIs plus a human-readable description. While this collection
is on the lower end of ontology expressiveness, it is likely the largest living
ontology that is available today. In this paper, we (1) show that standard Wiki
technology can be easily used as an ontology development environment for
named classes, reducing entry barriers for the participation of users in the
creation and maintenance of lightweight ontologies, (2) prove that the URIs of
Wikipedia entries are surprisingly reliable identifiers for ontology concepts, and
(3) demonstrate the applicability of our approach in a use case.

Keywords. Wikis, Ontologies, Reuse, Collaborative Ontology Building, RDF,
RDF-S, OWL

1. Introduction

Ontologies are consensual, explicit conceptualizations of a domain of discourse [1, 2].
In short, they are unambiguous representations of concepts, relationships between
concepts (for example, but not limited to, a hierarchy), instances, and axioms.
Unambiguous in this sense means two things: First, the representation should allow
humans to precisely grasp the meaning of any element, so that humans have a well-

124

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

defined vocabulary at hand when annotating data, expressing queries, or drawing
conclusions. Second, the representation should have a formal semantics, so that it
supports machine reasoning. For a comprehensive overview, see [3]. However, it is
important to note that ontologies are not just formal representations of a domain, but
much more community contracts about such formal representations. Since a discourse
is a dynamic social process, during which previous propositions are often modified,
especially refined, or discarded, and new topics need to be added, such a community
contract cannot be static, but must be able to reflect the community consensus at any
point in time. Also, the respective community must be technically and skill-wise able
to be involved in building the, or committing to the, ontology.
Ontologies can have a varying degree of expressivity, ranging from flat collections of
consensual concepts to abundantly axiomatized models. Many ontologies have a
subsumption hierarchy that allows to infer implicit class membership, but this is not a
mandatory property. In its least expressive form, an ontology is a collection of named
concepts with a natural language definition of their meaning, i.e. a controlled
vocabulary.
Though more expressive ontologies support more sophisticated reasoning, even such
flat ontologies can be extremely useful. Already having unique identifiers (e.g. URIs)
assigned to concepts described in natural language is very beneficial, for it helps
improve recall and precision in information retrieval by eliminating the significant
amount that is caused by synonyms and homonyms.
Now, we can observe on one hand that there are very few real domain ontologies
available; a large share of ontologies published on the Web are outdated, dead
collections created in some academic research context. On the other hand, the English
version of Wikipedia contains more than one million entries, which means it holds
unique identifiers for the same number of concepts.
Currently, both ontology tools and ontology languages impose high entrance barriers
for potential users, excluding the vast majority of Web users. The Web Ontology
Language OWL [4], for example, is in several aspects non-intuitive for anybody who
does not come from the Description Logics (DL) community, and publishing an
ontology in a persistent manner requires infrastructure (e.g. a HTTP server) that is not
available to an average user.
This in combination likely contributes to the fact that the most popular approach of
creating ontologies is engineering-oriented, i.e., a small number of skilled individuals
carefully constructs the representation of the domain of discourse, and releases the
results at some point in time to a wider community of users. However, (1) the
sequential paradigm of this approach and (2) the fact that a small group constructs the
ontology for a bigger group has several weaknesses:
First, the ontology evolution is not under the full control of the ontology user
community. For example, missing entries cannot be added by any user who reveals the
need for a new concept, but has to be added by the small group of creators. This is
slow and incomplete, for it may be too much a burden for the users to report missing
entries. Also, the addition may take too long if the domain is undergoing conceptual
change. In natural language, in comparison, the evolution of the vocabulary is under
the control of the user community. Anybody can invent and define a new word or
concept in the course of communications.

125

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Second, users creating annotations cannot easily grasp the intension of a concept;
there is often a lack of communication between ontology creator and user. Somebody
using an ontology e.g. for annotating instances or expressing queries has little help in
determining whether a given concept is suitable for his or her needs, since the formal
part of the ontology only constrains the interpretation of a concept, but does, with the
exception of very expressive ontologies, not actually define the meaning of this
concept. This leaves the ontology user with sparse natural language descriptions, e.g.
in the form of the Dublin Core field dc:description. Such is often not sufficient
to check whether the ontology creators read the concept in the same manner as the
potential ontology user does, and many ontology creators with a strong formal
background put little emphasis on the natural language definitions and related non-
functional properties. For example, “ice cubes” in UNSPSC can be understood as any
form of ice cubes or as all ice-cube-related business documents; see [5] and [6]. As a
consequence, two parties referring to the same ontology might read the intension of
the concept differently, which can lead to incomplete and/or inconsistent results and
operations.
We propose to directly use the infrastructure and culture of Wikis as an ontology
engineering workbench that fosters true collaborative ontology creation and
maintenance for lightweight ontologies, in the sense that anybody can add a new
element to the ontology, and refine or modify existing ones. At the same time, we
want to reuse the vast amount of Wikipedia entries (more than one million in the
English version) as ontology components.
We especially propose the use of multimedia elements to improve the richness and
disambiguity of informal concept definitions in an ontology. Also, we regard it as
beneficial if the definition of a concept is not separated from the discussion that lead
to shaping the intension of this concept, since the history of a conceptualization is a
valuable part of the respective definition. In many sciences, especially philosophy, the
notion of a term is hard to grasp without knowing the historical debates that lead to its
introduction.

1.1 Our Contribution

In this paper, we (1) show that standard Wiki technology can be easily used as an
ontology development environment without modification, reducing entry barriers for
the participation of users in the creation and maintenance of lightweight ontologies,
(2) present a quantitative analysis of current Wikipedia entries and their properties,
(3) prove that the URIs of Wikipedia entries are surprisingly reliable identifiers for
ontology concepts, and (4) demonstrate how the entries available in Wikipedia can be
used as ontology elements.

1.2 Research Approach

First, we developed a minimal technical solution for using Wikipedia entries as
ontology elements in RDF. Second, we took a representative, random sample (n=100)
from a snapshot of the English version of Wikipedia (http://en.wikipedia.org/). Third,

126

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

we analyzed whether the concept represented by the URI at the time of adding this
entry is still consistent with the most recent description retrievable at the respective
URI, i.e. whether annotations made using the URI in the past remain correct despite
the fact that Wiki entries can be easily modified by an open community. We
especially analyzed the amount of disambiguation pages, which are inserted when the
same terminology refers to distinct concepts in various contexts. Fourth, we
quantitatively analyzed properties like average age of entries and amount of change
per time. Since we know from statistics that random samples are, if designed
properly, very reliable estimates for the full population (i.e. the full Wikipedia
content), our approach returns precise data about the suitability of Wikipedia content
as concepts.

1.3 Related Work

Work related to ours mainly falls into the following categories:

Community-driven Ontology Building: There is already significant literature about
collaborative ontology engineering in general, e.g. Tadzebao and WebOnto (see [7]).
[8] describe collaborative ontology building in analogy to Wikis, but (1) do not
borrow more from the Wiki community than the pure name, (2) take a very rich
ontology meta-model as the starting point, (3) do not elaborate on the community
focus of ontology building, and (4) do not address the advantage of adding
multimedia elements in the informal descriptions of concepts.
Wikispecies [9] can already be regarded as a first Wiki-centric ontology for species. It
even includes a subsumption hierarchy; which is, however, a lesser challenge in this
narrow application domain since there is a single consensual taxonomy in Biology,
the Linnaean taxonomy. Recently, the term “Folksonomies” was brought up as a
reference for on-the-fly classifications created by users [10, 11]. This work is very
much related to ours, however there are main differences. First, we aim at reusing the
vast amount of existing Wikipedia entries as ontology elements. Second, we do not
distinguish between tags and Wikipedia pages, i.e. we propose to use each Wikipedia
URI as the identifier for a concept. Third, we point to the importance of multimedia
elements in Wikipedia entries for capturing the intension of such concepts. Fourth, we
stress the fact that the history function of Wikipedia is an important component of a
concept definition, since it reflects the discourse that has led to the most recent state.
[12] points out that the entry barriers for ontology development and usage should be
lowered. The “Simple Knowledge Organisation System (SKOS)” [13] is such an
approach. [14] describes the DILIGENT knowledge processes which proposes
ontology evolution and collaborative concept mapping and refinement as core
techniques for building ontologies in order to deal better with domain dynamics and
other ontology engineering challenges.

Augmenting Wikis with Semantic Web technology: Platypus Wiki [15] is a Wiki
augmented by Semantic Web approaches, namely RDF, while we want to use Wikis
for creating ontologies that can be used anywhere in the Semantic Web. [16]
describes Rhizome, a Semantic Wiki system that also includes the functionality of

127

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

creating arbitrary RDF resources easily. A first version of our work has been
presented in [17], but this prototype aimed at deploying a modified Wiki installation
as an ontology engineering platform, while we now think that Wikipedia must be the
starting point due to the enormous number of existing entries and community pickup.

At a non-ontology level, the usefulness of Wikipedia as a point of reference is
discussed in [18]; however, this refers more to the aspect whether all facts said about
a topic are authoritative in detail, and not whether the URIs represent consensual
concepts.

 Especially in the last months, there is vast interest in combining Semantic Web
and Wiki approaches. However, all approaches known to us are different to ours in
the way that they aim at augmenting Wikis with Semantic Web components, while we
propose (1) to use unmodified Wikis as a platform for collaborative ontology building
on the level of named classes, and (2) harvest the wealth of concept definitions
already contained in Wikipedia. In this sense, our work is complimentary to
“Semantic Web Wiki” work and can be easily combined with such approaches.

2. Understanding Wikipedia as an Ontology Asset and Ontology Workbench for
the Masses

We propose to use Wiki implementations in general and especially Wikipedia as a
means for

(1) defining URIs for concepts,
(2) describing the intension of those concepts in natural language, and probably

augmented by multimedia elements, e.g. drawings, pictures, videos, or sound
recordings, and

(3) preserving the discourse that has led to the current version of a Wiki page as an
important part of the definition of the respective URI.

In a nutshell, we understand the URIs of Wiki/Wikipedia entries as identifiers for
named classes. This approach appears very straightforward and might even be
perceived trivial. However, it is trivial only on the technological level, but should be
quantitatively validated prior to its usage.

The motivation for this approach is based on the following aspects:

(1) Wikipedia contains more than 1,000,000 entries and is likely the biggest
collection of URIs augmented by a textual definition available.

(2) Wikipedia is popular as a reference and its concepts can thus be expected to
have commitment by a wide audience. Based on our analysis given below,
we can estimate that the total amount of active contributions (e.g. additions
or modifications) exceeds 2,465,000 per month. More than 50 % of the
concepts have been changed at least once per each month of their existence.

(3) Wiki technology imposes only minimal requirements on a user and is likely
the simplest way of creating a persistent URI plus informal description.
Anybody can add a URI for a needed concept anytime.

(4) Most Wiki packages contain a comprehensive history function that allows
referring to both the latest version as well as each past version of an entry

128

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

using unique URIs. Thus, different states of the discourse become First
Order Objects (FOOs) that can also be referred to.

The main paradigm of our work is simplicity, i.e. we want to support only as much
functionality as can be used productively by a large share of the community.

2.1. Research Challenges

When using Wiki entries as ontology elements, we see at least the following research
challenges.

Resource vs. Concept: One can argue whether the URI
http://en.wikipedia.org/wiki/Let_it_be

refers to this specific Wikipedia entry as a resource or to the respective album by the
Beatles. We propose as a minimal ontological commitment to our approach that each
Wikipedia entry is to be understood as the entity that an average layman associates
with this description. In this sense, the URI quite naturally reflects the Beatles album,
not the Wikipedia description of the album. This is a proposed social convention and
can of course be debated, but makes a lot of sense in the context of our proposal.

Wiki Entries: Classes or Instances: Since there is no explicit knowledge
representation model in the background, a Wiki entry can be anything; it is not clear
whether it refers to an instance, a concept, or a property. By social convention,
Wikipedia contains mostly entries that are proper nouns and does not include
relationships and properties (see also below). So it must be clarified whether a Wiki
entry is to be treated as a class or as an instance, at least if the ontology model
requires a choice between these two. We solve this issue by omitting this distinction
between instance and class, which is no significant problem in pure RDF or in OWL
Full.

Versioning and Wiki URI Schemes: A standard Wiki already provides all
functionality necessary to create a textual definition and a unique URI. For example,
anybody could have added an entry for the Republic of Austria to Wikipedia, now
available at
http://en.wikipedia.org/wiki/Austria.

We could immediately use this mechanism and propose to re-use this URI not only as
the resource locator for retrieval of the description, but also as the identifier for the
concept “Republic of Austria”. Now the problem is that since everybody can alter the
text, we never know whether the current version is a monotonic extension of any
previous version. So anybody who used this URI for the annotation of instances or
any other statement might find that his statement no longer holds with the modified
version. We propose a very hands-on solution, based on a combination of the
“history” functionality in the MediaWiki distribution, and a versioning scheme
embedded in the URI for concepts, same as used by the W3C for W3C documents or

129

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

the WSMO, WSMX, and WSML working groups [19]. The main idea is that the
general URI, e.g.
http://en.wikipedia.org/wiki/Austria

always refers to the latest version, while all intermediate versions have an additional
URI of their own.
In MediaWiki/Wikipedia, all intermediate versions already have unique identifiers in
the following form:
http://en.wikipedia.org/w/index.php?title=Austria&oldid
=23005009

However, since this includes the name of the script “index.php”, it is not fully
compliant with the design principles of URIs, see [20].
It would be desirable if the MediaWiki software is modified in a sense that makes the
history entries use persistent URIs that are not bound to implementation details (e.g.
PHP). This could be achieved e.g. by adding the date and time of creation (plus
probably the IP address of the originator):
http://en.wikipedia.org/wiki/Austria/YYYY-MM-DD-HH-MM-SS-IP

This allows referring either to the latest version or to any specific version. It also
makes it possible to create statements about a specific version. This challenge is
closely related to the next one.

Conceptual Consistency of URIs over time: Wiki entries can be modified and
changed by anyone and there are no substantial institutional agreements between the
users who create a new entry and the ones who modify it later. It is possible that the
concept represented by a URI changes substantially over time, rendering old
annotations inconsistent. This is especially a problem when so called “disambiguation
pages” are introduced, which happens when the community realizes that the same
word is a homonym and used in very different senses in different contexts. In such
cases, the original page is turned into a disambiguation page that contains separate
links to the multiple context-specific entries. A core part of our work presented in this
paper deals with a quantitative analysis of this problem, i.e. whether this theoretical
problem is a significant obstacle, or whether it is negligible.

Dominance of Proper Nouns: While Wiki packages alone can also be used to define
URIs for properties, e.g.
http://en.wikipedia.org/wiki/isAFriendOf,

it is by social convention that Wikipedia does not contain such entries. This means
that we cannot find properties and relationships as entries in Wikipedia. There are at
least three ways of dealing with this:

(1) We use properties and relationships defined in popular existing ontologies,
namely Dublin Core elements [21, 22] together with Wikipedia entries.

(2) We create complimentary property ontologies in an engineering fashion, e.g.
“sells”, “rents”, “repairs” for e-Commerce applications.

(3) We modify Wiki packages so that they can be used for defining object
properties (linking resources as subjects to Wikipedia entries as objects) and

130

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

datatype properties (linking resources to literal values) and deploy a
complimentary “Property Wikipedia”.

All three approaches can be used in combination. We have already implemented
the second and third approach. For reasons of simplicity, we restrict the example in
this paper to the use of Dublin Core elements, though.

Redundancy: In collaborative ontology engineering, it can happen easily that
multiple entries for the same concept are created. This has no negative impact on
precision, but lowers the recall of information retrieval. Wiki contains mechanisms
for merging pages in such cases. In this case, “#redirect [[PAGENAME]]” is to be
inserted into the body of the discontinued page. Such links could be translated into
statements of equivalence.

Selection of a Proper Ontology Meta-Model: We have to define an ontology meta-
model that is suitable for a large audience. In our current approach, we support only
plain RDF and completely leave out any kind of hierarchical order. This is not
because we think this would be irrelevant; we are rather still researching proper
support mechanisms that help yield consensual subsumption hierarchies. The problem
with collaborative building of subsumption hierarchies is that a local modification can
have lots of unwanted side effects that are not immediately obvious.

2.2 Example

In the following, we give an example of how Wikipedia entries can be used for
describing Web resources. The example is based on the social convention that the
reused Wikipedia entries are understood as the entity or concept that an average
layman associates with this description, not as the Web resource itself. In this sense,
http://en.wikipedia.org/wiki/John_Lennon

refers to John Lennon as the singer and not to the Wikipedia entry about John
Lennon.

The example below represents the facts that

- John Lennon was a contributor to the Beatles album “Let It Be”,

- the title of this Beatles album is “Let It Be (Beatles Album)”,

- John Lennon is related to John Lennon’s discography and
- that John Lennon can be described by “John Winston Ono Lennon was a

singer, songwriter, poet and guitarist for the British rock band The Beatles”.

131

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY wiki "http://en.wikipedia.org/wiki/">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="&wiki;Let_it_be">
 <dc:title>Let It Be (Beatles Album)</dc:title>
 <dc:contributor rdf:resource="&wiki;John_Lennon"/>
</rdf:Description>

<rdf:Description rdf:about="&wiki;John_Lennon">
 <dc:description> John Winston Ono Lennon was a singer, songwriter,
poet and guitarist for the British rock band The
Beatles.</dc:description>
 <dc:relation rdf:resource="&wiki;John_Lennon_discography"/>
</rdf:Description>

</rdf:RDF>

Figure 1 shows the resulting RDF graph.

John Winston Ono Lennon was a singer, songwriter, poet and guitarist for the ...

http://en.wikipedia.org/wiki/Let_it_be

Let It be (Beatles Album)

http://en.wikipedia.org/wiki/John_Lennon

http://en.wikipedia.org/wiki/John_Lennon_discography

http://purl.org/dc/elements/1.1/title

http://purl.org/dc/elements/1.1/contributor

http://purl.org/dc/elements/1.1/description

http://purl.org/dc/elements/1.1/relation

John Winston Ono Lennon was a singer, songwriter, poet and guitarist for the ...

http://en.wikipedia.org/wiki/Let_it_be

Let It be (Beatles Album)

http://en.wikipedia.org/wiki/John_Lennon

http://en.wikipedia.org/wiki/John_Lennon_discography

http://purl.org/dc/elements/1.1/title

http://purl.org/dc/elements/1.1/contributor

http://purl.org/dc/elements/1.1/description

http://purl.org/dc/elements/1.1/relation

Figure 1. RDF graph of the example.

3. Evaluation

In this section, we provide evidence that our approach is not only possible from a
technical standpoint, but that the URIs of Wikipedia entries are surprisingly reliable
identifiers for ontology concepts, despite the fact that they are yielded in a
community-driven manner.

3.1 Methodology

We want to test whether the concepts defined by the URIs of Wikipedia entries
undergo significant change during their lifespan, or whether modifications tend just to
add more information, which would not change the intension of the concept, but just
allow additional inferences.

For this purpose, we took a random sample (n=100) of entries in the English version
of WikiPedia on November 17, 2005. For this purpose, we used the „random page“

132

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

functionality of the MediaWiki software. We assume that the random number
generator employed is of sufficient quality for the purpose of this survey. We know
from statistics that the mean and median of a sample is a reliable estimate for the
mean and median of the full population, which frees us from the need to analyse all
entries in Wikipedia.

For each of the selected Wikipedia URIs, we performed the following two tasks:

(1) We compared whether the concept or entity identified by the URI has
changed significantly between the very first version and the current versions,
in the sense that a layman annotation of a Web resource or a layman
statement about the initial concept would hold for the first version but not for
the current or vice versa. We distinguished the following cases:

Case 1a: No significant change in meaning; the entry has been a stable,
regular concept from its very first version to the current one.

Case 1b: The entry has always been a Wiki “disambiguation page”. It refers
to a stable concept (i.e. all homonyms that could be referred to by this name).

Case 2: A minor change in meaning has occurred. An example is that
“Gloucester Courthouse” initially referred to the town and now refers to the
“census designated place”, which is still the same for many purposes.

Case 3a: There was a major change in meaning.

Case 3b: The URI was a regular entry in the beginning but turned into a
disambiguation page later.

(2) For each entry, we also recorded the time and date of creation, the time and

date of the last modification, the amount of editing tasks over its lifespan and
per month of existence, and its age, i.e. the time lapsed between the initial
creation and the date of our analysis (November 17, 2005).

Our hypothesis is that despite the ongoing change and uncontrolled editing of
Wikipedia entries, there exists stable community consensus about the meaning of the
respective URI.

3.3 Results

In the following, we summarize the results of our survey. Table 1 shows that only 3 %
of the sample have turned into a disambiguation page during its lifespan. This is
insofar important as this category of entry can have the most negative impact on
precision in the usage of concepts for information retrieval, since initially, two
communities might use the same URI to refer to distinct concepts.

133

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Table 2 summarizes our findings with regard to the stability of concepts over their
lifespan. One can see that 89 + 5 = 94 entries out of 100 were stable and could be
used for annotation purposes without major problems. One entry underwent a slight
change in meaning and 2 +3 = 5 entries were substantially modified. In other words,
95 % of the concepts can be used without or with only minor problems.

Table 1. Amount of URIs in the sample (n=100) that have turned into disambiguation pages

Disambiguation pages

URI refers to a
regular concept

URI has always been
a disambiguation

page

URI became a
disambiguation page

during its lifespan

92 5 3

Table 2. Amount of significant changes in meaning between an initial and the current version
of Wikipedia entries

Significant changes in meaning between initial and current version of
Wikipedia entries

Case 1: None Case 2: Minor Case 3: Major
1a: Stable,

regular
concept

1b: Always a
disambiguation

page

Slight change in
meaning

3a: Major
change in
meaning

3b: URI became a
disambiguation

page

89 5 1 2 3

Table 3 shows the distribution properties of the number of modifications per
Wikipedia URI. The median (i.e. the element in the middle of the sample) was
changed 9.5 times during its lifespan. In other words, 50 % of the entries are changed
9.5 times or less. In relation to the duration of their existence, 50 % were changed 1.2
times a month or less. A look at the quartiles Q1 through Q4 reveals that the lowest
25 % of entries in Wikipedia was changed between 1 and 5 times (Q1), the next 25 %
were changed between 5 and 9.5 times, the third 25 % were changed between 9.51 and
19 times and the 25 % of entries that were modified most frequently underwent
between 19 and 233 modifications.
If we multiply the mean of modifications per month of existence (2.9) with the total
number of Wikipedia entries at the time of the survey (850,000 in November 2005),
we reveal that there are on average 2,465,000 changes to entries in the English
Wikipedia each month, which points to quite an active user community.

1 The reason why the median value is not an integer number is that we have an even sample

size. In this case, if the two elements in the middle of the population have different values,
per definition, the mean of these two is the median. Thus the 50st entry underwent 9 changes
and the 51st underwent 10 changes.

134

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Table 3. Distribution properties of the number of modifications per Wikipedia URI

Number of modifications per Wikipedia URI

Absolute number Modifications per

month of existence

Mean 21.8 2.9
Median 9.5 1.2
Standard
Deviation 37.5 7.1
Q1 5.0 0.6
Q2 9.5 1.2
Q3 19.0 2.7
Q4 233.0 66.6

Table 4 indicates the distribution of the age of entries in days. 50 % of the entries
were created less than 363 days before November 17, 2005. This is an amazing
indication of how Wikipedia has gained interest and user involvement. 75 % (see the
third quartile, Q3) were created less than 610 days before November 17, 2005, and
only 25 % of the entries have been created more than 609 days ago.

Table 4. Lifespan in days (from creation until Nov 17, 2005)

Lifespan in days

(from creation until Nov 17, 2005)
Mean 412,6
Median 362,7
Standard Deviation 348,9
Q1 102,7
Q2 362,7
Q3 609,0
Q4 1360,7

4. Discussion

The data from our survey shows quite clearly that for the vast majority of Wikipedia
entries, there is community consensus about the meaning of the URI from the very
beginning to the most recent version. In other words, communities seem to be able to
achieve consensus about named classes as very lightweight ontological agreements in
an unsupervised fashion and with only the known mechanisms for preventing
destructive changes of standard Wiki software.
As shown above, we can estimate that each month, about 2,465,000 change
operations are made by Wikipedia users, but only 5 % of concepts change in a major

135

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

sense during their lifespan. We think this is a fundamental argument in favor of
community-centric ontology building.
Also, our findings show that the majority of work on Wikipedia has been done in the
last 20 months, since 75 % of the content of the English Wikipedia has been added in
that timeframe.
Of course, there are drawbacks. First of all, what we can reuse from Wikipedia as
ontology components are just named classes. There is zero support for reasoning
tasks. By intention, we did not try to include any subsumption hierarchy or axioms.
The reason is that other preliminary experiments which we carried out show that only
very simple ontology metamodels seem suitable for collaborative ontology building.
We suspect that two major reasons are the prohibitive “cost” of learning complex
ontology models and the lack of transparency of effects for the average user. A simple
non-consensual rdfs:subClassOf statement can render the annotations of a
multiplicity of users incorrect, and a simple modification of rdf:domain can lead
to class memberships that are not intended. Our future research will focus on how this
skeleton can be extended towards a richer ontology meta-model without introducing
new entrance barriers for users. We think for example of clever voting mechanisms
with thresholds that make a subsumption relationship subject to community voting.
Also, 5% of concepts that change their meaning over time means that some
annotations will become corrupt over time. However, we regard this as a trade-off
decision between ontology coverage in the sense of timely addition of needed
concepts, and consistency. We think that we cannot prevent the Semantic Web to
break here and there. It is important to recall that a core catalyst to the success of the
Web was the willingness to accept inconsistencies and broken links in return for
agility and distributed evolution.
In our opinion, the delegation of ontology building to a small “elite” group of
ontology engineers is conceptually flawed, since the small group has no immediate
access to the representational requirements and the conceptual preferences of the
community members.

5. Conclusion

We have shown that standard Wiki technology can be easily used as an ontology
development environment without modification, reducing entry barriers for the
participation of users in the creation and maintenance of lightweight ontologies. On
the basis of a quantitative analysis of current Wikipedia entries and their properties
we have provided substantial evidence that the URIs of Wikipedia entries are
surprisingly reliable identifiers for ontology concepts. In addition, we have
demonstrated how the more than one million entries in Wikipedia can be used as
ontology elements, opening this enormous source of named classes for making the
Semantic Web a reality.

Acknowledgements: The work presented in this paper is partly funded by the
European Commission under the project DIP (FP6-507483), the TransIT
Entwicklungs- und Transfercenter at the University of Innsbruck, and Florida Gulf
Coast University.

136

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

References

[1] N. Guarino, "Formal Ontology and Information Systems," presented at FOIS '98,
Trento, Italy, 1998.

[2] T. R. Gruber, "Toward principles for the design of ontologies used for knowledge
sharing," International Journal of Human-Computer Studies, vol. 43, pp. 907-928,
1995.

[3] D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce, 2nd ed. Berlin etc.: Springer, 2004.

[4] W3C, "OWL Web Ontology Language Guide. W3C Recommendation 10 February
2004," available at http://www.w3.org/TR/2004/REC-owl-guide-20040210/,
retrieved Nov 30, 2005.

[5] M. Hepp, "A Methodology for Deriving OWL Ontologies from Products and
Services Categorization Standards," presented at the 13th European Conference on
Information Systems (ECIS2005), Regensburg, Germany, 2005.

[6] M. Hepp, "Representing the Hierarchy of Industrial Taxonomies in OWL: The
gen/tax Approach," presented at the ISWC Workshop Semantic Web Case Studies
and Best Practices for eBusiness (SWCASE05), Galway, Irland, 2005.

[7] J. Domingue, "Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the Web," presented at the 11th Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada, 1998.

[8] J. Bao and V. Honavar, "Collaborative Ontology Building with Wiki@nt. A multi-
agent based ontology building environment," presented at the 3rd International
Workshop on Evaluation of Ontology-based Tools (EON2004), Hiroshima, Japan,
2004.

[9] Wikimedia Foundation, "Wikispecies," available at http://species.wikipedia.org/,
retrieved Nov 30, 2005.

[10] Wikipedia, "Folksonomy," available at http://en.wikipedia.org/wiki/Folksonomy,
retrieved Nov 30, 2005.

[11] A. Mathes, "Folksonomies -Cooperative Classification and Communication Through
Shared Metadata," available at http://www.adammathes.com/academic/computer-
mediated-communication/folksonomies.html, retrieved Nov 30, 2005.

[12] M. D. Lytras, "Semantic web and information systems: An agenda based on
discourse with community leaders," International Journal of Semantic Web and
Information Systems, vol. 1, pp. i-xii, 2005.

[13] W3C, "Simple Knowledge Organisation System (SKOS)," available at
http://www.w3.org/2004/02/skos/, retrieved Nov 30, 2005.

[14] D. Vrandecic, S. Pinto, C. Tempich, and Y. Sure, "The DILIGENT knowledge
process," Journal of Knowledge Management, vol. 9, pp. 85-96, 2005.

[15] S. E. Campanini, P. Castagna, and R. Tazzoli, "Platypus Wiki: a Semantic Wiki Wiki
Web," presented at the 1st Italian Semantic Web Workshop Semantic Web
Applications and Perspectives (SWAP), Ancona, Italy, 2004.

[16] A. Souzis, "Building a Semantic Wiki," IEEE Intelligent Systems, vol. 20, pp. 87-91,
2005.

[17] M. Hepp, D. Bachlechner, and K. Siorpaes, "OntoWiki: Community-driven Ontology
Engineering and Ontology Usage based on Wikis," presented at the 2005
International Symposium on Wikis (WikiSym 2005), San Diego, California, USA,
2005.

[18] Wikipedia, "Criticism of Wikipedia," available at
http://en.wikipedia.org/wiki/Criticism_of_Wikipedia, retrieved Nov 30, 2005.

137

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

[19] J. de Bruijn and J. Kopecký, "Persistent URIs for WSMO and WSML deliverables.
WSMO Note 2 February 2005," available at http://www.wsmo.org/TR/NOTE-
URIs/20050202/, retrieved Nov 30, 2005.

[20] T. Berners-Lee, "Cool URIs don't change," available at
http://www.w3.org/Provider/Style/URI.html, retrieved Nov 8, 2004.

[21] Dublin Core Metadata Initiative, "Dublin Core Metadata Element Set, Version 1.1:
Reference Description," available at http://dublincore.org/documents/dces/, retrieved
Nov 30, 2005.

[22] Dublin Core Metadata Initiative, "DCMI Metadata Terms," available at
http://dublincore.org/documents/dcmi-terms/, retrieved Nov 30, 2005.

138

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

From Wikipedia to Semantic Relationships: a
Semi-automated Annotation Approach?

Maria Ruiz-Casado, Enrique Alfonseca and Pablo Castells

Computer Science Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain
{Maria.Ruiz,Enrique.Alfonseca,Pablo.Castells}@uam.es

Abstract. In this paper, an experiment is presented for the automatic annotation
of several semantic relationships in the Wikipedia, a collaborative on-line ency-
clopedia. The procedure is based on a methodology for the automatic discovery
and generalisation of lexical patterns that allows the recognition of relationships
among concepts. This methodology requires as information source any written,
general-domain corpora and applies natural language processing techniques to
extract the relationships from the textual corpora. It has been tested with eight
different relations from the Wikipedia corpus.

1 Introduction

Wikis are environments where uploading content to the web is extremely simple and
does not require the users to have a technical background. Although wikis can be in-
tended for individual use in applications such as Personal Information Management [1],
this emergent area is producing many popular collaborative environments where web
users are able to share and contrast their knowledge about a certain topic. Wikis have
many applications, such as building collaboratively on-line information sites (e.g. dic-
tionaries or encyclopedias) or for coordinating and exchanging information in project
management or corporate intranets [2].

The success of many public wikis is due to the interest they have arisen among
potential contributors, who are eager to participate due to their particular involvement
in the domain under discussion. Dating from 1995, Wiki Wiki Web1 is dedicated to
software development. ProductWiki2 is an on-line product catalogue. Wikitravel3 is a
world wide travel guide. Other specific domains can be found for instance at Comixpe-
dia4, a wiki for comics, or Wookipedia5, that collects information about the Star Wars
saga. Some general-domain wiki portals are the on-line encyclopedia Wikipedia6, the
dictionary Wiktionary7 or the questions-answers portal Answerwiki8.
? This work has been sponsored by MEC, project number TIN2005-06885
1 http://c2.com
2 http://productwiki.com
3 http://wikitravel.org
4 http://comixpedia.org
5 http://starwars.wikicities.com
6 http://wikipedia.org
7 http://www.wiktionary.org/
8 http://answerwiki.com

139

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Its success is mainly due to several factors: the easiness to publish and review con-
tent on the web through the web browser, usually avoiding barriers such as logins or
technical knowledge; the few restrictions on what a contributor can write; and the user-
friendly interface which provides flexible mechanisms to get the content published. The
philosophy behind wikis is to sum up the limited effort of each contributor to produce
a repository of knowledge, the size of which depends on the number of contributors
and the amount of information they are willing to provide. The Wiki platforms take
advantage of the synergy of the aggregated work of their individual contributors.

Given that there is usually no authorship (and no responsibilities), concerns have
been raised about the quality that can be attained in public wikis. A recent claim that
the quality of scientific articles in Wikipedia is equivalent to the quality of the Ency-
clopaedia Britannica [3], has been reported to be flawed [4]. Anyway, wikis have shown
that it is possible to write collaboratively very useful content, available to everyone with
little personal cost. This characteristic is specially attractive for the Semantic Web field,
where the need to place semantic annotations in existing and upcoming web content
constitutes a costly hindrance.

1.1 Blending Semantic Web and Wikis

Most of the world wide web content is written in natural language and is intended for
human readers. Due to the vast amount of information contained in the web, nowadays
many tasks need a certain degree of automation. When trying to search and process
web content automatically, a machine has to cope with language ambiguities and im-
plicit knowledge that it can hardly process. The Semantic Web constitutes an initiative
to extend the web with machine readable content and automated services far beyond
the original capabilities of the World Wide Web [5], primarily making the web content
explicit through semantic annotations. This would allow an easy automated processing
when searching and retrieving information. Annotation standards have been developed
by the Semantic Web community giving way to the RDF9 and OWL10 annotation lan-
guages, among other. The annotations refer to ontologies, a knowledge representation
formalism that is used to model the underlying knowledge.

But placing semantic tags in the huge amount of existing and upcoming content can
also be too costly if it has to be done manually by specialised ontologists. In 2004, the
size of the Semantic Web, i.e. the percentage of web pages containing metadata, was
estimated to be less than 5% of the total size of the web [6]. Therefore, as some authors
have recently pointed out [2, 7, 8], initiatives like Wikis, that allow easy and collabora-
tive information exchange, can be of great help in making the Semantic Web successful.
Wiki communities have proved to succeed in collaboratively producing at low cost vast
information repositories. The addition of semantic annotations to documents can be
achieved following the Wiki philosophy of lowering the technical barriers: the seman-
tic annotations are presented to the user as simply assigning a type to the hyperlinks,
and providing internal facilities to transform these annotations into RDF or other Se-
mantic Web annotation language. On the other hand, semantic annotation allows that

9 http://www.w3.org/RDF/
10 http://www.w3.org/2001/sw/WebOnt/

140

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Wikis benefit from the automation of management, searching and retrieval pursued by
the Semantic Web.

This blend between the Semantic Web and wiki fields is called Semantic Wikis.
Some projects developing semantic wikis are IkeWiki11 and Semantic Wikipedia12.

1.2 Adding ingredients to the blend: Information Extraction

One step further in the creation of semantic annotations through a wiki environment is
pointed out by some authors [7] as the possibility of assisting the user in the editing
process to facilitate the selection of the typed links. For instance, the authoring envi-
ronment may generate candidates for link types automatically, by extracting semantic
information from the current Wikipedia corpus.

There is a large amount of information already present in the existing Wikipediae:
as for March 2006, the English Wikipedia has more than one million articles. German,
Spanish, French, Italian, Japanese, Dutch, Polish, Portuguese and Swedish Wikipediae
are above one hundred thousand articles each. Using semi-automatic annotation pro-
cedures, it should be possible, in a short amount of time, to offer a fully enriched
Semantic Wikipedia, which already has a large set of users willing to collaborate. A
large-scale annotation may be the trigger to induce many people to switch from a tra-
ditional Wikipedia to a semantically annotated one. Therefore, the Semantic Wikipedia
may be accelerated in its way to maturity.

The approach that we present in this paper addresses that point. We depart from our
previous work in the extraction of semantic relationships to annotate the Wikipedia [9,
10], consisting in disambiguating Wikipedia encyclopedic entries with respect to Word-
Net, and determining four basic relationships amongst the concepts: hyponymy (is-a)
and its inverse hyperonymy, and holonymy (has-part) and its inverse meronymy. In this
paper, we extend the previous work to propose a methodology to automatically extract
any other kind of relationship, and describe the results obtained when it is applied to the
Wikipedia corpus. This procedure can be integrated in a tool that makes suggestions to
users concerning where to place tags in Semantic Wiki documents.

We would like to point out that any automatic tagging procedure will produce some
amount of mistakes. However, the work in correcting a few errors will always be smaller
than the amount of work needed to create all the semantic tags from scratch. In the
same way that current Wikipedia users, when they identify a mistake in an article, are
quite content to edit the article and correct it, the users of a semantic Wikipedia could
do the same. Rather than departing from documents containing plain text and a few
examples of relations, they would start with the full text of the Wikipedia, containing
many semantic relationships, and, while reading the articles, they would just have to
correct the wrong labels as they find them.

This paper is structured as follows: Section 2 introduces our approach to the au-
tomated extraction of patterns from textual sources; Sections 3 details the approach
followed to identify new relations; Section 4 describes the experiment conducted with

11 http://ikewiki.salzburgresearch.at/
12 http://wiki.ontoworld.org

141

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Wikipedia and the results obtained; finally, Section 6 concludes and points out open
lines for future work.

2 Extracting Relationships from text: our approach

Our goal is to find semantic relationships and properties (attributes) in free text auto-
matically. To do so, we have developed an approach based in automatic learning of
lexico-syntactic patterns. The procedure starts with a seed list containing pairs of re-
lated items. It may be a list containing writers and some of their works; painters and
their pictures; or soccer players and the clubs in which they have played. Next, many
sentences containing the pairs of terms from the seed list are collected automatically
from the web, and they are processed with the following Natural Language Processing
(NLP) tools:

– Segmentation (tokeniser and sentence splitter).
– Part-of-speech tagging, i.e. identifying which words are nouns, verbs, adjectives,

etc.
– Stemming, to obtain the canonical form of all the words.
– Named Entity Recognition, to identify dates, numbers, people, locations and organ-

isations.
– Chunker (partial syntactic analyser).

The information obtained from the processed sentences can be used to study which
words, syntax and entities are typically used in a human language when a particular
relation between two concepts is expressed. To do so, we search in the context that
surrounds the two concepts in order to find repetitive lexical patterns that appear with
the concepts when the relation is present. A pattern models a possible way to convey
a semantic relation in natural language, and can be applied to search and extract new
pairs of concepts between which the same relation holds.

Figure 1 shows an overview of the process carried out for each type of relation-
ship. The final version of our system is intended to take an XML dump of the English
wikipedia and to produce an equivalent file with the semantic annotations added. In
this way, the result can be seen directly on a web browser using standard Semantic
Wikipedia software.

The following subsections elaborate on the separate steps. A complete technical
exposition of the procedure can be found in [10, 11].

2.1 Collecting contextual patterns from the web

Given a pair of related terms appearing in a text, the context of this pair is the text
fragment that encloses them. The context boundaries are sometimes expressed as a
window of N words to the left and to the right of those two terms, or as a syntactic
constituent (e.g. a sentence) containing them both.

For the task that we address in this paper, extracting semantic relationships between
words, the context can be very useful. For example, in (1) it can be seen that tail is a
part of dog, because of the possessive pronoun its. In the context, the possessive pronoun

142

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 1. Overview of the procedure.

indicates the existence of a holonymy (part-of) relationship. Also, the verb composed in
Sentence (2) indicates a relationship composer-song between John Lennon and Imagine.

(1) The happy dog wagged its tail.

(2) The piano on which John Lennon composed “Imagine” is on its way back to the
Beatles Story in Liverpool.

In some fields, such as Word-Sense Disambiguation and Information Retrieval,
these contexts are usually characterised using a bag-of-words approach, where all the
words in the context are put together regardless of their relative ordering or syntactic
dependencies. In our approach, as we are interested in finding patterns of words that
model a relationship, we keep the relative ordering of the words.

A relationship is formed by a triple: the two concepts related and the relationship
itself. When the relation is modelled as a pattern, the two concepts participating are
usually called hook and target [12]. So, in the previous example, the relation composer-
song can be modelled with the pattern (3).

(3) The piano on which hook composed target is on its way back to the Beatles Story
in Liverpool.

As we mentioned before, we start with a seed list containing related pairs. The
patterns can be collected, for each relationship, using this list: for each pair of terms,

1. Perform a search on the Internet containing the two terms in the pair.
2. Process with the NLP tools all the sentences that contain the two terms.
3. Substitute the first term by hook, and the second term by target.

143

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

2.2 Pattern Generalisation

The patterns of words with which natural languages can express semantic relationships
are usually manifold. Therefore, for each kind of relationship, we need to capture all this
lexical variability. The purpose is to group similar patterns to obtain one that is general
enough to match different contexts amongst which there are only small differences in
paraphrasing. Given that many of the patterns collected in the previous step will have
shared parts, that information can be used to guide the generalisation.

The core idea is the following: to generalise two original patterns, the common parts
are maintained, and the differences are substituted either by disjunctions or wildcards.
For instance, from Sentences (4a,b), the patterns (5a,b) are extracted, and the generali-
sation (6) can be obtained. The star is wildcard (representing any word), and the vertical
bar | means a disjunction, meaning that any of the two adjectives can be found before
the target.

(4) a. Alfred Hitchcock directed the famous film Psycho
b. Alfred Hitchcock directed the well known film Psycho

(5) a. hook directed the famous film target
b. hook directed the well known film target

(6) hook directed the * famous|known film target

This pattern can detect the relation director-film and determine the participating
concepts in many sentences, e.g. (7a,b,c).

(7) a. Alfred Hitchcock directed the famous film The Birds
b. Bernardo Bertolucci directed the well known film The Last Emperor
c. Woody Allen directed the amusing and famous film Annie Hall

Note that in this example above, pattern (6), has been obtained from two patterns,
one containing the word famous, and the other containing the words well known, but it
is not the only possible generalisation. In total, using disjunctions and wildcards, from
patterns (5a,b) the following generalisations are plausible:

– Substituting them all with the wildcard, *.
(8) hook directed the * film target

– Creating a disjunction famous|well followed by the wildcard *.
(9) hook directed the famous|well * film target

– Creating the disjunction famous|known, preceded by the wildcard *.
(10) hook directed the * famous|known film target

We believe that the third one is the most suited to this task, as the terms in the dis-
junction both undertake the same role in the sentence, as modifiers of the target, while
well is an adverb modifying the adjective known. This can be partly identified auto-
matically if the generalisation procedure takes into account the part-of-speech (PoS) of
the words. In this way, during the generalisation step, we only allow for disjunctions of
words that share the same part-of-speech.

144

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

2.3 Patterns Pruning

In the previous subsection, it is still not clear when to stop generalising. For instance,
given that the three sentences in (11) do not have any word in common, their generali-
sation would be pattern (12), which is clearly unusable because it matches everywhere.

(11) a. hook directed the famous film target.
b. hook won an Oscar with his film target.
c. hook ’s movie target.

(12) hook * target

In general, very specific and long patterns tend to be very accurate when extracting
new relations from text, as they impose many restrictions to the contexts they match. But
they are applicable in few cases and hardly extract new relationships. On the contrary,
short and very general patterns have a good recall because they match frequently in
the texts, but their precision may be low, extracting wrong relationships. It is desirable,
therefore, to evaluate the set of patterns as they are generalised, in order to stop as soon
as the result of a generalisation produces too many results with a low precision.

A possible way to calculate the precision of the generalised patterns is the one de-
scribed in [12]. In this approach, after all the patterns have been collected and all their
possible generalisations calculated, a development corpus is collected again from the
web, searching for pages that contain the hooks from the seed list. The precision of
each pattern is estimated as the percentage of times that it extracts, from the develop-
ment corpus, a pair existing in the seed list.

In our approach [11], we used an improved evaluation methodology that mainly
consists in testing the patterns, not only for a development corpus collected with their
original hooks, but also for the development corpora collected with the hooks from dif-
ferent relationships, which altogether constitutes what we call the development super-
corpus. The performance of each individual pattern for each particular relation is tested
in the super-corpus.

Based on the scores calculated through this automatic evaluation, the set of patterns
can be refined discarding those that do not reach a predefined threshold in precision, or
that are not able to match in the super-corpus a minimum number of times.

2.4 Pattern Disambiguation

Up to this point, the patterns have been extracted and generalised separately for each
relationship. Hence, we have some patterns that, supposedly, appear between writers
and their works, or between people and their birth place. The problem is that it may
be the case that the same pattern is extracted for different relations. This is specially
relevant in the case of a few short patterns such as the genitive construction (13). As
can be seen in Sentences (14a-e), it can be used to convey semantic relationships as
dissimilar as scientist-theory, painter-painting, writer-work, architect-work or location-
sublocation, among many others.

(13) hook ’s target

145

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

(14) a. Einstein’s Theory of General Relativity
b. Bosco’s The Garden of Delights
c. Tolkien’s Lord of the Rings
d. Gaudi’s Sagrada Familia
e. Barcelona’s Sagrada Familia

In order to overcome this difficulty, we propose two solutions:

– To take into account the Named Entity (NE) tag of the hook and the target, when-
ever it has been annotated by the NE recogniser during the NLP processing. In this
way, people, locations, organisations and dates would be marked as such in the ex-
amples above. If we annotate that a pattern is only applicable if the hook is of type
location, then it will only apply to Sentence (14e) and not to Sentences (14a-d).
This can be used to somewhat mitigate the problem.
Though not completely error-free, patterns including NER are more expressive and
present a better ability to differentiate relationships.

– Even so, it may be the case that a pattern still appears in the lists of patterns for
different relationships. Currently, many of these patterns are ruled out in the prun-
ing step, because we are taking into consideration the test corpora from all the
relationships when we build the development super-corpus. Hence, if pattern (13),
extracted for the relationship scientist-theory, is applied to the test corpus collected
for author-work, it will erroneously mistag all the book as scientific theories, which
will be detected because they do not appear in the seed list for theories, and the pre-
cision of the rule will be low.

3 Extraction Procedure

Once we have a set of patterns for each semantic relationship, the extraction procedure
is simple. Each pattern will contain:

– A flag indicating whether the hook appears before the target, or vice-versa.
– A left-hand part, consisting of the words at the left of the hook or the target,

whichever appears first.
– A middle part, with the words between the hook and the target.
– A right-hand part.

Given a set of patterns for a particular relation, the procedure to obtain new related
pairs is as follows:

1. Download the corpus that should be annotated from the web.
2. Clean the HTML code, remove menus and images
3. Process the textual corpus with NLP tools:

(a) Tokenise the text and split sentences.
(b) Apply a part-of-speech tagger.
(c) Stem nouns and verbs.
(d) Identify Named Entities.
(e) Chunk Noun Phrases.

146

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

4. For every pattern,
(a) For each sentence in the corpus,

i. Look for the left-hand-side context of the pattern in the sentence.
ii. Look for the middle context.

iii. Look for the right-hand-side context.
iv. Extract the words in between, and check that either the sequence of PoS

tags or the entity type are correct. If so, output the relationship.

The above procedure is repeated for all the relations considered.

4 Experiment and results

4.1 Experimental settings

The experiment carried out consists in extracting several relationships and properties
from a test corpus downloaded from the English Wikipedia. The relations and properties
considered are:

– Person’s birth year
– Person’s death year
– Person-birth place
– Actor-film
– Writer-book
– Football player-team
– Country-chief of state
– Country-capital

In order to collect the corpus of the Wikipedia, to ensure that many entries contain
the indicated relationships, we have performed a recursive web download starting from
the following entries:

– Prime Minister, that contains hyperlinks to Prime Ministers from many countries.
– Lists of authors, that contains hyperlinks to several lists of writers according to

various organising criteria.
– Lists of actors, that contains hyperlinks to several lists of actors.
– List of football (soccer) players, containing hyperlinks to many entries about play-

ers.
– List of national capitals, containing the names of national capitals from countries

in the world.

From those initial pages, all the hyperlinks have been followed up to a depth of 3–4
hyperlinks, having collected in total 20,075 encyclopedia entries totalling roughly 460
Megabytes after cleaning the HTML files. The NLP toolkit used to process them was
the Wraetlic tools v. 2.013.

The pruned patterns for the mentioned relations have been produced using the pro-
cedure described above. For this experiment, only those patterns showing a precision

13 Available at http://www.eps.uam.es/∼ealfon/eng/research/wraetlic.html

147

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Pattern
On time expression TARGET HOOK was baptized|born
" HOOK (TARGET -
-|-- HOOK (TARGET -
AND|and|or HOOK (TARGET -
By|about|after|by|for|in|of|with HOOK TARGET -

Table 1. Some of the patterns obtained for the relationship birth year.

.

Relation No. of patterns No. of results Precision
Birth-year 16 15746 74.14%
Death-year 8 5660 90.20%
Birth-place 3 154 27.27%
Actor-film 11 4 50.00%
Country-Chief of state 109 272 50.00%
Writer-book 176 179 37.29%
Country-capital 150 825 11.45%
Player-team 173 315 7.75%

Table 2. Number of patterns obtained for each relationship, number of results extracted by each
pattern set, and precision.

higher than 0.90 in the development super-corpus and that matched at least 3 times are
used. Table 1 shows some of the patterns obtained for the property birth date. In the
second column of Table 2 the total number of patterns that were finally obtained for
each of the semantic relationships under consideration is shown.

4.2 Results and discussion

Table 2 shows the number of results (pairs of related terms) that each of the pattern
sets has extracted, and the precision attained. This precision has been estimated by
correcting manually least 50 results from each relationship.

As can be seen, the precision for birth year and death year is very good, because
they are usually expressed with very fixed patterns, and years and dates are entities that
are very easily recognised. The few errors are mainly due to the following two cases:

– Named Entity tagging mistakes, e.g. a TV series mistagged as a person, where the
years in which it has been shown are taken as birth and death date.

– Names of persons that held a title (e.g. king or president) during a period of time,
that is mistakenly considered their life span.

On the other hand, as expected, the other examples have proven more difficult to
identify. We have observed the problem, mentioned in the previous sections, that some
patterns are applicable for many kinds of relationships at the same time. This phe-
nomenon is specially relevant in the case of the player-team relation. The precision of
the patterns is 92% when they are applied only to the entries about soccer players, but
the figure falls down to 7.75% when applied to the whole Wikipedia corpus collected.

148

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

This means that they are patterns that, in the domain of soccer, usually indicate the re-
lationship between the player and its club, but in other contexts they may be conveying
a different meaning. One of these patterns is the already mentioned genitive construc-
tion. In sports articles, when this construction is found between an organisation and a
person is usually expressing the player-team relation, as in Liverpool’s Fowler. But it
also extracted many wrong pairs from documents belonging to different topics.

The same also applies to the case of countries and capitals. During training, from
phrases such as Spain’s Madrid, the system extracted the genitive construction as indi-
cating a relationship of capitality, but it is a source of errors because it can also express
a part-of relationship between a country and any of its cities.

In the case of actor-film, we have observed that in the actors’ entries in the Wikipedia,
there is usually a section containing all the filmography, expressed as an HTML bullet
list. In this way, because the information is already semi-structured, the textual patterns
cannot apply. It should be easier to extract that data using other simpler procedures that
take benefit of the structure of the entry.

4.3 Automatically generated list pages

To test a possible application of this procedure in a real case, the algorithm has been
used to generate automatically a list page using the data collected from Wikipedia. The
example chosen is the list of people born the year 1900. A total of 57 people had been
annotated with that birth date. The system was able to obtain the list automatically and,
in the cases in which the death date was available as well, it was added as additional
information. A manual evaluation of the generated list revealed the following:

– Two out of the 57 people were not people, due to errors in the Named Entity recog-
niser. These were eliminated by hand.

– One birth date was erroneous, and it was really the date of publication of a book
about that person. That entry was also removed.

– One person had been extracted with two different (but correct) spellings: Julian
Green and Julien Green, so they were merged in one.

– From the remaining 53 people, 14 did not have an associated Wikipedia entry. They
had been extracted from other lists in which they were mentioned, but their biogra-
phy is not available yet. These were left inside the list, as it is useful information.

– Finally, three people in the list had ambiguous names, so they were directed to
disambiguation pages. It was easy to modify the hyperlink so they pointed directly
to the particular person with that name that had been born in 1900.

Figure 2 shows a possible layout for the generated page. Note that, in the Wikipedia,
there are special categories to group all the people born every year. So, the category
called Category:1900 birth contains all the people for which someone has categorised
their entries as having been born in 1900.

Before our experiment was performed, this category contained 640 people14 born
in that year, all of them with an entry in the Wikipedia. From our list, we have been
14 Note that, in our experiment, we do not process the whole English wikipedia (more than one

million entries) but a small subset containing around 20,000 entries.

149

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 2. A possible layout for the page generated automatically containing people that were born
in 1900, after a manual correction was performed.

able to identify and categorise four people born in that year that were still not inside the
category, and 14 people that are not listed because yet nobody has written their entries.

In the same way that this list has been gathered, it should be easy to create or extend
list pages using other criteria, such as famous people born in a certain city, or people
that died at a certain age. If the Wikipedia were extended with semantic links, then all
these list pages would not need to be stored as static pages inside the Wikipedia server,
but ideally they would be generated on-the-fly using the semantic metadata.

5 Related work

To our knowledge, there is no other work reported addressing the task of annotating
semi-automatically wiki content for the Semantic Web. However, there is already much
research on automatically identifying relationships in unrestricted text. In particular,
the use of lexical or lexicosyntactic patterns to discover ontological and non-taxonomic
relationships between concepts has been proposed by [13–15], all of whom manually
define regular expressions to extract hyponymy and part-of relationships. [16] learns

150

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

patterns that express company merge relationships. [17] quantifies the error rate of a
similar approach for hyponymy relationships at 32%.

Systems that learn these lexical patterns from the web have the advantage that the
training corpora can be collected easily and automatically. Several approaches have
been proposed recently [18, 19, 12], having various applications in mind: Question-
Answering [12], multi-document Named Entity Coreference [20], and the generation
of biographical information [21].

Other systems that automatically extract ontological knowledge from text are Text-
ToOnto [22], OntoLT [23] and KIM [24].

6 Conclusions and Future Work

In this paper, we propose the use of Natural Language Processing techniques to auto-
matically extract semantic relationships from the Wikipedia. We have shown that, for
some relationships, the precision obtained is acceptable, and with a brief manual revi-
sion good-quality metadata can be obtained.

We believe that these procedures can contribute in increasing the size of current
Semantic Wikis semi-automatically. Even though it will always be necessary a manual
revision to identify the wrong results, the work involved in correcting the generated
metadata is smaller than creating it all from scratch, as we have shown with the example
of generating list pages.

Furthermore, we foresee applications of this work for automatic ontology building
and population, as hinted by [7].

Concerning future work, we plan to continue exploring ways to improve the preci-
sion of the patterns for the relationships with poorer performance. In particular, the use
of patterns that may express different relationships, depending on the context, needs to
be further enhanced.

We also plan to try this procedure with yet more relationships, and in other lan-
guages.

References

1. Kiesel, M., Sauermann, L.: Towards semantic desktop wiki. UPGRADE special issue on
The Semantic Web 6 (2005) 30–34

2. Schaffert, S., Gruber, A., Westenthaler, R.: A semantic wiki for collaborative knowledge
formation. In: Proceedings of SEMANTICS 2005 Conference., Vienna, Austria (2005)

3. Giles, J.: Internet encyclopaedias go head to head. Nature, Special Report 438 (2005) 900–
901

4. Britannica, E.: Fatally flawed: Refuting the recent study on encyclopedic accuracy by the
journal nature (2006)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web - a new form of web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American 284 (2001) 34–43

6. Baeza-Yates, R.: Mining the web. El profesional de la información 13 (2004) 4–10
7. Krötzsch, M., Vrandecic, D., Völkel, M.: Wikipedia and the semantic web - the missing

links. In: Proceedings of WIKIMANIA 2005, 1st International Wikimedia Conference.
(2005)

151

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

8. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic wikipedia. In: Pro-
ceedings of the 15th international conference on World Wide Web, WWW 2006, Edinburgh,
Scotland (2006)

9. Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic assignment of wikipedia encyclope-
dic entries to wordnet synsets. In: Proceedings of the Atlantic Web Intelligence Conference,
AWIC-2005. Volume 3528 of Lecture Notes in Computer Science. Springer Verlag (2005)
380–386

10. Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic extraction of semantic relationships
for wordnet by means of pattern learning from wikipedia. In: Natural Language Processing
and Information Systems. Volume 3513 of Lecture Notes in Computer Science. Springer
Verlag (2005) 67–79

11. Alfonseca, E., Castells, P., Okumura, M., Ruiz-Casado, M.: A rote extractor with edit
distance-based generalisation and multi-corpora precision calculation. In: In Proceedings
of the Poster Session of ACL-2006. (2006)

12. Ravichandran, D., Hovy, E.: Learning surface text patterns for a question answering system.
In: Proceedings of the ACL-2002. (2002) 41–47

13. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings
of COLING-92, Nantes, France (1992)

14. Hearst, M.A.: Automated discovery of wordnet relations. In: Christiane Fellbaum (Ed.)
WordNet: An Electronic Lexical Database. MIT Press (1998) 132–152

15. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings of ACL-99.
(1999)

16. Finkelstein-Landau, M., Morin, E.: Extracting semantic relationships between terms: super-
vised vs. unsupervised methods. In: Workshop on Ontologial Engineering on the Global
Info. Infrastructure. (1999)

17. Kietz, J., Maedche, A., Volz, R.: A method for semi-automatic ontology acquisition from
a corporate intranet. In: Workshop “Ontologies and text”, co-located with EKAW’2000,
Juan-les-Pins, France (2000)

18. Brin, S.: Extracting patterns and relations from the World Wide Web. In: Proceedings of the
WebDB Workshop at the 6th International Conference on Extending Database Technology,
EDBT’98. (1998)

19. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections.
In: Proceedings of ICDL. (2000) 85–94

20. Mann, G.S., Yarowsky, D.: Unsupervised personal name disambiguation. In: CoNLL-2003.
(2003)

21. Mann, G.S., Yarowsky, D.: Multi-field information extraction and cross-document fusion.
In: ACL 2005. (2005)

22. Maedche, A., Staab, S.: Semi-automatic engineering of ontologies from text. In: Proceedings
of the 12th Internal Conference on Software and Knowledge Engineering, Chicago, USA
(2000)

23. Buitelaar, P., M. Sintek, M.: OntoLT version 1.0: Middleware for ontology extraction from
text. In: Proc. of the Demo Session at the International Semantic Web Conference. (2004)

24. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: Kim - a semantic platform
for information extaction and retrieval. Journal of Natural Language Engineering 10 (2004)
375–392

152

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Extracting Semantics Relationships between Wikipedia
Categories

Sergey Chernov, Tereza Iofciu, Wolfgang Nejdl, and Xuan Zhou

L3S Research Centre, University of Hannover, Expo Plaza 1, 30539, Hannover, Germany,
{chernov, iofciu, zhou, nejdl}@l3s.de

Abstract. Wikipedia is the largest online collaborative knowledge sharing sys-
tem, a free encyclopedia. Built upon traditional wiki architectures, its search ca-
pabilities are limited to title and full-text search. We suggest that semantic in-
formation can be extracted from Wikipedia by analyzing the links between cat-
egories. The results can be used for building a semantic schema for Wikipedia
which could improve its search capabilities and provide contributors with mean-
ingful suggestions for editing the Wikipedia pages. We analyze relevant measures
for inferring the semantic relationships between page categories of Wikipedia.
Experimental results show that inlinks provide a better evidence of semantic con-
nection in comparison to outlinks.

1 Introduction

The Wikipedia [1] is a freely accessible Web encyclopedia. The Wikipedia project
started in 2001 as a complement to the expert-written Nupedia and it is currently run by
the Wikipedia Foundation. There are Wikipedia versions in 200 languages, with more
than 3,700,000 articles and 760,000 registered users. It is built on the expectation that
collaborative writing improves articles over time. Users do not need to be experts on
the topics they are writing on, but they are warned that their contributions can be modi-
fied by anyone, all the modifications are logged and the information about the evolution
of each page is available online. Because of its writing openness, “edit wars” and dis-
putes may easily appear when users do not reach an agreement on a given topic. The
Wikipedia project uses Wiki software, which was invented by Ward Cunningham [8]
in 1995. The English Wikipedia version is the world’s largest wiki, followed by the
German Wikipedia version.

An especially interesting property of Wikipedia is the semantic tagging and linkage
of its content. Pages are heavily interlinked and many of them explicitly assigned to one
or more semantic Categories. Categories should represent major topics and their main
use within Wikipedia is in finding useful information. There are two types of categories.
The first type is used for classification of pages with respect to topics. They can have
hierarchical structure, for example the page can be assigned to the category Science
or one of its subcategories like Biology and Geography. The second type of categories
is Lists, they usually contain links to instances of some concept, for example List of
Asian Countries points to 54 Asian countries. Each page may be assigned to several
categories.

153

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Like in most of the wikis, the search capabilities on Wikipedia are limited to tra-
ditional full-text search, while search could benefit from the rich Wikipedia semantics
and may allow complex searches like find Countries which had Democratic Non-Violent
Revolutions. Using categories as a loose database schema, we can enrich Wikipedia
search capabilities with such complex query types. Wikipedia categories could be or-
ganized in a graph, where the nodes are categories and the edges are hyperlinks. For
example, if some page from the category “Countries” points to a page from the cate-
gory “Capitals” we can establish a connection “Countries to Capitals”. However, not
all hyperlinks in Wikipedia are semantically significant such that they can be used to
facilitate search. The problem is how to distinguish strong semantic relationships from
irregular and navigational links.

In this paper we propose two measures for automatic filtering of strong seman-
tic connections between Wikipedia categories. They include number of links between
categories and Connectivity Ratio, which could be applied to inlinks or outlinks. For
evaluation, we apply these heuristics to the English Wikipedia and perform user study
to assess how semantically strong the extracted relationships are. We observe that, for a
given category, inlinks provide good evidence for semantic relationships, while outlinks
have poor performance.

The rest of the paper is organized as follows. The related work is given in Sec-
tion 2. In Section 3 we describe in details the problem of discovering strong semantic
relationships between categories and the possible use of semantic scheme in Wikipedia.
Later, in Section 4 we describe our analysis of factors, relevant for discovering semantic
links and present our experiments in Section 5. We conclude and outline future research
directions in Section 6.

2 Related Work

The idea to bring semantics into Wikipedia is not new, several studies on this topic have
been carried out in the last few years.

The semantic relationships in Wikipedia were discussed in [7]. The authors consid-
ered the use of link types for search and reasoning and its computational feasibility. Its
distinctive feature is the incorporation of semantic information directly into wiki pages.
Later, the semantic links proposal was extended in [10] to the Semantic Wikipedia vi-
sion. According to this model, the pages annotations should contain the following key
elements: categories, typed links, and attributes. Typed links in form of is capital of are
introduced via markup extension [[is capital of::England]], each link can be assigned
multiple types. They also proposed the usage of semantic templates, based on the ex-
isting Wikipedia templates. We follow this approach, but concentrate on automatic ex-
traction instead of manual link assignment. Also, our goal is to enable better search
on Wikipedia, but not to provide means for full-fledged reasoning. So we can tolerate
higher level of inconsistency in annotations and use ill-defined schemas. The system
for semantic wiki authoring is presented in [2]. It aids users in specifying link types,
while entering the wiki text. This approach considers ontology-like wiki types, using
“is a” or “instance of” relationship types. Since the prototype supports manual editing,

154

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

it does not discuss automatic relationship assignment. Our approach can be used as an
additional feature in this system.

One of the first attempts to automatically extract the semantic information from
Wikipedia is presented in [6], which aims at building an ontology from Wikipedia col-
lection. This work focus on the extraction of categories using links and surrounding
text, while we aim at extracting semantic links using assigned categories. The paper [5]
shows the importance of automatic extraction of link types, and illustrates several basic
link types, like synonyms, homonyms, etc. It also suggests to use properties for dates
and locations. However, it does not propose any concrete solutions or experimental re-
sults. Studies of history flow in Wikipedia are presented in [9]. The work is focused
on discovering collaboration patterns in page editing history. Using an original visual-
ization tool they discovered editing patterns like statistical corroboration, negotiation,
authorship, etc. This work does not consider semantic annotation of Wikipedia articles.

The link structures in Wikipedia have been studied recently. The work from [11]
presents an analysis of Wikipedia snapshot on March 2005. It shows that Wikipedia
links form a scale-free network and the distribution of in- and outdegree of Wikipedia
pages follow a power law. In [3] authors try to find the most authoritative pages in
different domains like Countries, Cities, People, etc., using PageRank and HITS al-
gorithms. It is reported in the paper, that Wikipedia forms a single connected graph
without isolated components or outliers.

3 Problem

The usage of semantic links can be illustrated by the example we have mentioned in
Section 1. Consider the query find Countries which had Democratic Non-Violent Rev-
olutions. When we search in full-text for Country Revolution Democracy we get a lot
of pages, which contain all the keywords, but most of them do not talk about particular
countries. In a database-like view, the target page of our query should belong to the
Countries category, and it should have a connection to a page in the category Revolu-
tions which mentions the word Democracy. In current Wikipedia, there is actually a link
between the pages Ukraine and Orange Revolution. If we put into a separate inverted
list1 all pages with Country to Revolution link type, we can force the previous query to
return more relevant results.

However, it is infeasible to maintain and index all possible links between Wikipedia
categories. An example of typical Wikipedia linkage between categories is shown in
the Fig.3. Ovals correspond to categories, squares contain the lists of pages and arrows
show existence of at least on hyperlink between categories. The category Republics is
pointed by the Female Singers, Egg, and Non-violent Revolutions categories. It also
points to Capitals in Europe, Spanish-American War People and Non-violent Revolu-
tions categories. Some of these links can be converted into strong semantic relation-
ships, like “Republics to Non-violent Revolutions” categories, while relationships like
“Egg to Countries” are not regular semantic connections and only used for navigation
or some unimportant purposes. It is useless to type and index such “LinkSourceCater-
gory to LinkTargetCategory” relationships, as they cannot help users in search. Instead,

1 Inverted indices are used in information retrieval for keyword search, for details see [12]

155

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

we need to filter out unimportant links and extract semantically significant relation-
ships from Wikipedia. This could be achieved by analyzing the link density and link
structures between the categories.

Besides indexing purposes, the prominent semantic relationships can be of use for
template generation and data cleaning. For example, if we have some pages in Countries
without link to pages in Capitals, the system could suggest users to add missing link.
One may want to create more precise link types and distinguish between type “Country
has Capital” and “Country changed Capital”, but this task is much more challenging
and it is not the focus of this paper, we concentrate on selecting only coarse-grained
semantic relationships.

4 Approach to Extracting Semantic Links

This section presents our approaches to extract semantically important relationships
from the links in Wikipedia. This task can be seen as an automatic construction of a
database schema, where we want to emphasize the meaningful relations between cate-
gories and disregard unimportant ones.

It seems reasonable, that highly connected categories represent strong semantic re-
lations. For example, if a considerable percentage of pages from category “Country”
has links to category “Capital”, we can infer that there must be a “Country to Capital”

156

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

relationship between the two instances categories. On the other hand, if there are only
several links between two categories like “Actor” and “Capital”, it seems that there is
no regular semantic relationship like “Actor to Capital”.

We conduct experiments to test this filtering method. In the experiments, we extract
a core set of pages which have a common topic (in our case the common topic is Coun-
tries). For this pages we extract all the categories they belong to, and also two lists of
categories, one for the pages with links toward Countries (inlink pages) and one for the
pages referred by Countries (outlink pages). The experiments with these lists can give
an idea about what link direction is more important for semantic relationship discov-
ery. During the experiments we test two measures used for finding the strong semantic
connections:

1. Number of links between categories. The more links we have between categories,
the stronger should their semantic connection be. We study separately the effect of
outgoing links and incoming links, so only links in one direction are considered
each time.

2. Connectivity Ratio. We can normalize the number of links with the category size,
to reduce the skew toward large categories. We call this normalized value Connec-
tivity Ratio, and it represents the percentage of linkage between two sets (in one
direction). Namely

ConnectivityRatioi =
NLij

NPi

where NLij is the number of links from category i to category j2, and NPi is the
total number of pages in categoryi.

5 Experimental Studies

In this section we describe our experimental setup and discuss the results.

5.1 Collection

For experiments we used the Wikipedia XML corpus [4] which is available for the
participants of INEX 2006 evaluation forum3. This corpus is based on the English
Wikipedia dump and has about 668,670 pages. We exported the dataset into a MySQL
4.1 database, the data size was about 1,2 Gigabytes . The pages belong to 63,879 dis-
tinct categories4; only pages from article namespace are included. Some of the pages in
the dataset were empty, so after an export we got a slightly different corpus statistics,
from the one reported in [4].

For the experiments we selected three sets of pages, which we called Countries,
Inset and Outset. The Countries set consists of 257 pages devoted to countries, they

2 In current experiments j always corresponds to a Countries set.
3 http://inex.is.informatik.uni-duisburg.de/2006/
4 Some categories names differ only by space character before the names, or slightly different

spelling. Our experimental setup does not assume use of NLP techniques, so we did not remove
these inconsistencies and treated these categories as distinct.

157

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

were manually extracted from the “List of countries” Wikipedia page, this set represents
the Countries category. We also built the Inset, which contains all Wikipedia pages that
point to any of the pages in the Countries, and Outset contains pages pointed from the
Countries. The statistics summary for the selected sets is presented in Table 1.

of pages # of assigned categories
Countries 257 405

Inset 289,035 60,277
Outset 30,921 14,587

Total (distinct entries) 290,893 63,879
Table 1. The Statistics from Experimental Collection

Each page consists of the name of the page, a list of associated categories, and
a list of links that can be internal links (pointing to Wikipedia pages) or external links
(pointing to pages from the Web), for experiments we only considered internal links. We
also maintain separately the information about links between pages and the connection
between pages and categories.

5.2 Results

The main evaluation criteria for our task is the quality of extracted semantic relation-
ships. To enable quantitative comparison between semantic connection we introduced
the Semantic Connection Strength measure (SCS). It receives 0, 1, or 2 values, where
grade 2 corresponds to a strong semantic relationship, value 1 to average and 0 indi-
cates weak semantic connection5. Two assessors were given the following instruction:
“category A is strongly related to category B (value 2) if every page in A should have at
least one link to B. It should be considered as an average relationship (value 1), if 50%
of pages in A should have at least one link to B and should be given weak relationship
(value 0) otherwise.” It turned out, that it is difficult even for human to decide, whether
a category should be connected to Countries or not. The level of disagreement between
accessors sometimes reached 40%, it shows that SCS metrics is very subjective and
should be improved in future.

First, we tested how number of pages linked from source to target category indicates
a level of semantic relationship. We ranked the categories from Inset and Outset by the
number of pages in them, which are linked to pages in Countries set. Using a fixed
interval, we selected separately 100 sample categories from both rankings, so they are
uniformly distributed across each ranking. These sample categories with corresponding
numbers of links are listed in the Table 2. The SCS measure for sampled sets was
averaged over every 20 categories, it is shown in the Fig. 5.2. On the ordinate we put
the average of SCS metrics, the abscissa shows categories intervals. We see from the
plot, that using Inset we have obtained the most strong semantic relationships, while
Outset has poor performance.

The better performance of Inset is also observed while using Connectivity Ratio as
a ranking factor, these results are given in Table 3 and Fig. 5.2. The performance of the

5 The intermediate values are also possible, for example when averaging the assessment results.

158

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

of links Inset # of links Outset
1 3272 American actors 193 Country code top-level domains
2 99 German poets 21 Governorates of Egypt
3 67 People from Arizona 15 South American history
4 52 1988 albums 12 Antigua and Barbuda
5 43 Rapists 10 Cote d’Ivoire
6 37 People from Hawaii 9 Yugoslavia
7 32 geography of Egypt 8 Ancient Japan
8 29 1974 films 7 Cross-Strait interactions
9 26 Stanford alumni 7 Empire of Japan
10 24 Camden 6 History of Mongolia
11 22 Pre-punk groups 6 Theology
12 20 Nuremberg Trials 5 Islands of Singapore
13 19 Video storage 5 Energy conversion
14 17 Neighbourhoods of Buenos Aires 5 Westminster
15 16 Dutch mathematicians 4 Geography of New Zealand
16 15 German currencies 4 Lists of lakes
17 14 National parks of Kenya 4 Yugoslav politicians
18 13 Cities in the United Arab Emirates 4 Encyclopedias
19 13 Egg 3 Subdivisions of Afghanistan
20 12 Swedish military commanders 3 Geography of Lebanon
21 11 Eurovision Young Dancers Competitions 3 Ecuadorian culture
22 11 Basketball at the Olympics 3 Rivers
23 10 Communes of Charente-Maritime 3 Nova Scotia
24 10 1846 3 Political parties in Sweden
25 9 New Zealand Reform Party 3 Roman Catholic Church
.
76 1 Australian sport shooters 1 Hindi
77 1 Canadian pathologists 1 Canadian television
78 1 Danish archbishops in Lund 1 Abstraction
79 1 Football in Uganda 1 Trinidad and Tobago writers
80 1 Ice hockey in China 1 Singaporean people
81 1 Latin American cuisine 1 Scythians
82 1 Mountains of Libya 1 Tetraonidae
83 1 Paradox games 1 Historic United States federal legislation
84 1 Road transport in Switzerland 1 Water ice
85 1 Spanish military trainer aircraft 1970-1979 1 Hiberno-Saxon manuscripts
86 1 Transportation in Manitoba 1 Belgian cyclists
87 1 Yom Kippur War 1 Business magazines
88 1 62 BC 1 British fantasy writers
89 1 Defunct Northern Ireland football clubs 1 Victims of Soviet repressions
90 1 Missouri Pacific Railroad 1 Empresses
91 1 U.S. generals 1 Medieval music
92 1 Creator deities 1 Soviet dissidents
93 1 Television stations in the Caribbean 1 University of Edinburgh alumni
94 1 Manitoba government departments and agencies 1 Signers of the U.S. Declaration of Independence
95 1 Libraries in Illinois 1 Microbiology
96 1 Star Wars Trade Federation characters 1 Communities in New Brunswick
97 1 Sin City 1 Electrical engineers
98 1 Ritchie County, West Virginia 1 Thomas the Tank Engine and Friends
99 1 Arapahoe County, Colorado 1 California Angels players

100 1 Mega Digimon 1 Towns in New Hampshire

Table 2. The 100 sample semantic connections extracted using number of links

159

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-20 21-40 41-60 61-80 81-100
Categories

A
ve

ra
ge

 S
em

an
tic

C

on
ne

ct
io

n
St

re
ng

th
Inset
Outset

Fig. 1. Average semantic connections strength for 100 sample categories, extracted using number
of links

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1-20 21-40 41-60 61-80 81-100
Categories

A
ve

ra
ge

 S
em

an
tic

C

on
ne

ct
io

n
St

re
ng

th

Inset
Outset

Fig. 2. Average semantic connections strength for 100 sample categories, extracted using connec-
tivity ratio

160

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

connectivity ratio Inset connectivity ratio Outset
1 1 Johannesburg suburbs 1 Provinces of Vietnam
2 1 Cities in Burkina Faso 1 New Zealand-Pacific relations
3 1 The Outlaws albums 1 Transportation in Lebanon
4 1 Gackt albums 1 9th century BC
5 1 North Carolina Sports Hall of Fame 1 Education in Belgium
6 1 Airlines of Liberia 1 Lake Kivu
7 1 Tongan rugby league players 1 Nepalese law
8 1 Hong Kong radio personalities 1 Sport in Lithuania
9 1 Yorb 0.928571 Republics

10 1 Education in Qatar 0.75 Economy of Greece
11 1 North African music 0.666667 Commonwealth Universities
12 1 Zara class cruisers 0.666667 World War II European theater
13 1 Airports in Shanghai 0.571429 Cities in Kosovo
14 1 Croatian athletes 0.5 Languages of Ukraine
15 1 Iranian photographers 0.5 Iraqi culture
16 1 Paleozoologists 0.5 1287
17 1 Swedish sportspeople 0.5 Bolivian music
18 1 Ceylon cricketers 0.5 Foreign relations of Hungary
19 1 Peanuts 0.5 Moroccan society
20 1 1997 films 0.5 Sri Lankan literature
21 1 Archaeological sites in Kazakhstan 0.461538 Politics of Macau
22 1 British make-up artists 0.416667 Ajaria
23 1 Coscoroba 0.4 Peninsulas of Russia
24 1 Farragut class destroyers 0.361111 Forced migration
25 1 High schools in Florida 0.333333 Bessarabia
.
76 0.346154 BBC 0.0508475 Unitarian Universalists
77 0.333333 Hydrography 0.0487805 File sharing networks
78 0.333333 Porn stars 0.047619 Spanish Civil War
79 0.333333 Komsomol 0.0447761 Swedish nobility
80 0.32 1973 American League All-Stars 0.0425532 Battles of France
81 0.3 Roman Republic 0.04 Babylonia
82 0.285714 Dacian kings 0.0384615 Cantons of Switzerland
83 0.272727 University of San Francisco 0.037037 Scales
84 0.25 Esperantido 0.0344828 Agriculture organizations
85 0.25 Cooking school 0.0325203 Alcoholic beverages
86 0.242424 Church architecture 0.03125 New Testament books
87 0.222222 Danny Phantom 0.0294118 Marine propulsion
88 0.2 Buildings and structures in Cardiff 0.0273973 British politicians
89 0.2 Prediction 0.025641 Food colorings
90 0.181818 Media players 0.0238095 Christian philosophy
91 0.166667 Computer animation 0.0222222 Governors of Texas
92 0.153846 Kroger 0.0208333 West Indian bowlers
93 0.142857 Scottish (field) hockey players 0.0186916 Ancient Greek generals
94 0.125 Free FM stations 0.017094 Spanish-American War people
95 0.111111 Palm OS software 0.0155039 English ODI cricketers
96 0.09375 Stagecraft 0.0136986 Presidents of the Cambridge Union Society
97 0.0769231 Transportation in Texas 0.0117647 Municipalities of Liege
98 0.0625 Guessing games 0.00952381 Medical tests
99 0.0434783 Massachusetts sports 0.00714286 Food companies of the United States
100 0.0163934 data structures 0.00414938 Telecommunications

Table 3. The 100 sample semantic connections extracted using connectivity ratio

161

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Connectivity Ratio measure is up to 25% better comparing it to the plain number of
links, this proves the advantage of the normalizing factor.

We presume our results can be explained similarly to the linkage analysis algo-
rithms, where inlinks are considered as sources of authority propagation. The authority
of a category increases when it gets links from any other category. This corresponds to
a vote from another author that there is a semantic connection between two categories.
We also need to check if the difference in size of the two selected sets can explain the
discrepancy in the performance.

6 Conclusions and Future Work

We have observed that, for a given category, inlinks provide good evidence for seman-
tic relationships, but outlinks have poor performance. We also show that normalized
Connectivity Ratio is a better measure for extracting the semantic relationships be-
tween categories. We consider this result might be skewed toward our core Countries
category. It is natural that there are a lot of inlinks for pages representing countries,
basically everything is or has happened in a country. The results we obtained are also
influenced by the ranking scheme we chose. We have to improve the connectivity ratio
formula so that it brings out the relevant relations and removes the trivial ones.

For our future experiments we want to select more categories as a starting set and
remove bias introduced by the Countries categories. The assessment of semantic rela-
tionship should be improved by taking into account possible information need. It would
be interesting to study a cardinality of link types relationships. For example, “Actor to
BirthDate” is a n:1 relation, while “Actor to Film” is a n:n relation. Another interesting
aspect is to investigate bidirectional relationships, categories size and their indegree, we
are also going to apply link analysis algorithms for establishing the semantic authorities
among categories.

7 Acknowledgments

We would like to thank Paul Chirita for numerous discussions and Michal Kopycki and
Przemyslaw Rys for their invaluable help with the experimental setup.

References

1. Wikipedia, the Free Encyclopedia. http://wikipedia.org, accessed in 2006.
2. David Aumueller. SHAWN: Structure Helps a Wiki Navigate. In Proceedings of BTW

Workshop WebDB Meets IR, March 2005.
3. Francesco Bellomi and Roberto Bonato. Network Analisis for Wikipedia. In Proceedings

of Wikimania 2005, The First International Wikimedia Conference. Wikimedia Foundation,
2005.

4. Ludovic Denoyer and Patrick Gallinari. The Wikipedia XML Corpus. Technical report,
2006.

5. Daniel Kinzler. WikiSense — Mining the Wiki. In Proceedings of Wikimania 2005, The
First International Wikimedia Conference. Wikimedia Foundation, 2005.

162

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

6. Natalia Kozlova. Automatic Ontology Extraction for Document Classification. Master’s
thesis, Saarland University, Germany, February 2005.

7. Markus Krötzsch, Denny Vrandecic, and Max Völkel. Wikipedia and the Semantic Web -
The Missing Links. In Proceedings of Wikimania 2005, The First International Wikimedia
Conference. Wikimedia Foundation, 2005.

8. Bo Leuf and Ward Cunningham. The Wiki Way: Quick Collaboration on the Web. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

9. Fernanda B. Viegas, Martin Wattenberg, and Kushal Dave. Studying Cooperation and Con-
flict between Authors with History Flow Visualizations. In Proceedings of SIGCHI 2004,
Vienna, Austria, pages 575–582. ACM Press, 2004.

10. Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer. Seman-
tic Wikipedia. In Proceedings of the 15th international conference on World Wide Web,
Edinburgh, Scotland, 2006.

11. Jakob Voss. Measuring Wikipedia. In 10th International Conference of the International
Society for Scientometrics and Informetrics, Stockholm, 2005.

12. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufmann, 1999.

163

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Wiki and Semantics: Panacea, Contradiction in
Terms, Pressure for Innovation?

Some experiments and tracks towards Intelligence
Amplifiers

Jean Rohmer

Centre des Nouvelles Technologies d’Analyse de l’Information
Thales Communications, France

jean.rohmer@fr.thalesgroup.com

Abstract. This paper examines the relative characteristics of wiki prin-
ciples and of semantic systems. It first stresses some oppositions between
these two approaches, and exposes the challenge of their reconciliation.
We then make a detailed description of Ideliance, a

”
pure“ semantic tool,

and we set criteria to compare several existing semantic wiki systems.
After a critical look at some of their features, we propose precise direc-
tions for cross-fertilisation of semantics and wikis, advocating for solid,
long-term foundations.

1 Semantic Wiki: an oxymoron which raises many
questions

We must first realise that the existence of the ”Semantic Wiki“ concept, comes
— like many other Information Systems concepts — from our inability to build
machines or programs which automatically understand natural language, either
in the form of documents or in the form of spoken or written conversations
(as quoted in [1], best analysis programs fail to understand a sentence in more
than 70% of the cases). Machines cannot help us without ”semantics inside“, and
today we have to strenuously feed them with this semantics.

In practice, we permanently have to waver between textual document man-
agement and structured database applications. Is there a life between Word and
SQL ? That is the question Semantic Wiki is about.

There are two ways to approach this question. The first one is extremely
theoretic, this is semantics, the second one is extremely practical, this is Wiki. At
first glance, they seem to be much too distant to hope that any fusion is possible.
Semantics has been endlessly studied for millenniums in literature, philosophy,
philology, linguistics, and Wikis sometimes look like an odd tinkering from an
idle programmer’s week-end. Moreover, while Wiki is the Hawaiian word for

”quick“, semantics refers to things like syntax, study, grammar, school ... and
school comes from ”skole“ which is the Greek word for ”being slow“, ”not to
hurry“ !

164

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

In other words:

Semantic Wiki means Slow Quick (SlowQuick ?)

In this paper, we would like to address various facets of this contradiction, at
the light of our experience in the development of a Semantic Network Manager:
IDELIANCE [2] and of Information Technology usage in large and small Business
environments.

In fact, Semantic Wiki is an ambitious endeavour: it aims at increasing the
synergy between people intelligence and the power of the grid of networked
computers; and in this period, where it is still embryonic, we should take time
-skole- to be sure to start with the right groundwork.

In this paper, we first describe the main features of IDELIANCE at the Wiki
light, then we review the main characteristics of significant Wiki implementa-
tions. This will help us to reformulate the Semantic Wiki challenge, and to make
proposals for sound directions for the future.

2 Ideliance: a
”
pure“ semantic network manager with

some wiki properties

As reported in [2], Ideliance was initially an attempt to bring the best ideas of
Artificial Intelligence on everybody’s desktop. In the same way as Ward Cunning-
ham [3] wanted to develop the ”simplest online database“, we wanted to develop
the ”simplest personal knowledge base“. For that purpose, we chose to develop a
user-friendly Semantic Networks [4] editor for everyday use in professional life.
The first Ideliance prototype was available in November 1993. Commercial usage
started in 1996 for France Telecom. Off-the-shelf personal versions were bought
in 1998 by French Atomic Energy Commission (CEA), and French Army. The
server version was installed in 2000 in large corporations like L’Oreal and Merck
Pharmaceuticals. [2] reports on lessons learnt from Ideliance applications.

Although the question of finding the right balance between textual and struc-
tured representation was perpetual during Ideliance design, the initial choice was
clearly in favour of full structured semantic networks. Ideliance proposes users
to create subjects, belonging to zero, one or more categories, and to write
statements of the form (subject / relation / subject), where each relation
has an inverse. A complement in a statement can be not only another subject,
but any resource (file, email, URL). A subject is any character string (includ-
ing numbers and spaces), without comma, and without length limitation. A set
of Ideliance objets is called a collection. Example of a statement and its inverse:

John Paul Wagner works for United Nations (UN)

United Nations (UN) is the employer of John Paul Wagner

In fact, and this is a main difference with wikis, there is no textual format for
statements: all statements are built from a graphical interface which let users

165

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

manipulate only names of subjects, relations and categories in a controlled way.
Nevertheless, we authorise a free text area associated with each subject, with
zones which may point to other subjects, without label/ relation on this link.

The basic mode of information display is the Ideliance ”Card“: given a subject,
it collects and displays all the statements having it in subject position. This
allows for an immediate navigation mode from Card to Card, each being built
dynamically. In the server mode, a card displays all up-to-date statements about
a subject written by any user. More precisely, each statement has a signature
(author, date of creation, visibility rights). User see only statements they are
allowed to, either directly or through group membership.

Conversely, several tools allow to publish Ideliance contents (e.g. cards) in
useful standard formats like Word, HTML, XML, Excel. Utilities permit also to
convert XML and Excel files into Ideliance statements. All reasonable features
we can expect on objects are available: delete, rename, duplicate, merge, extract.
For instance we can extract and merge collections.

A difference with most of Semantic Wikis is that there is no reference to a
standard like RDF in its implementation. Not only because it simply did not ex-
ist at this time, but because we wanted to make symbolic statements the unique,
atomic concept for information representation, totally in the hands of end-users,
so as to close all the backdoors to Software Engineers for any underground traffic
on information. This does not impede the usage of RDF as a standard interop-
erability format between Ideliance and other semantic applications. (There is
no mandate to choose RDF as an internal implementation feature). A WSDL
Web Service has been developed to let other applications read, write, query an
Ideliance server. These services could be reused to provide a more Semantic Web
compliant interface to Ideliance.

The main radical idea of Ideliance is to try to get rid of the notion of
document. Each atom of information is a statement, and the tool collects and
displays them on demand.

The card feature is one of these tools, but many others are available:

– semantic queries
– textual queries (à la Google)
– simple or complex tables in OLAP-like style
– simple or complex graphs

None of theses features has a textual format accessible by the users, who can
only go through an interface. (Internally, the objects corresponding to queries,
tables, graphs are represented as system-visible Ideliance statements).

Textual queries simulate the notion of document through the dynamic cards.
They retrieve all subjects whose card content matches the query. An option is to
extend this textual search to the content of documents used as complements to
the card subject. For this purpose, Ideliance embeds the Wilbur search engine 1.

Ideliance interaction with the user fully relies on the notions of emergence
and suggestions, which can be generally stated as: when an user starts an
1 see http://wilbur.redtree.com

166

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

action, the system suggests the usual ways to continue / complete it. We will
develop this point later in the discussion.

All these specifications and implementations where not done overnight. Ideliance
is the result of may years of evolutions with many kinds of users, either individual
or collective ones.

Currently, we are experimenting the addition of information analysis tools:
data mining, clustering, knowledge discovery, rules, in particular for Military
Intelligence and Business Intelligence applications.

3 A survey of some current Semantic Wiki proposals

Existing semantic wikis can be compared using some alternative options:

Approaches to the challenge of accomodating both free text and struc-
tured semantics:

– put structure / formalism inside text (option A1)
– put text inside structure / formalism (option A2)
– exclude text (option A3)

Note that the second approach is the one adopted by HTML, as the essence
of the Web, and later by XML.

Global design approach:

– grounded in technical architecture choices (option B1)
– driven by an end-user perspective (option B2)

As we have seen before, Ideliance illustrates Options A3 and B2.
Platypus [5], is a good illustration of option B1 : the idea is that a Wiki

page is annotated -in hidden fields- by RDF metadata statements, and that an
HTTP server can selectively download these metadata to the client, allowing
a natural chain of navigation. In Ideliance, we implemented a similar feature

”Ideliance Inside“ for HTML pages, where the hidden (and proprietary at that
time) Ideliance format could be extracted from an HTML page, along with a
symmetric mechanism allowing to generate Ideliance cards in human-readable
HTML, accompanied with the embedded corresponding Ideliance collection.

WikiSAR [6] is an illustration of option A1: the subject is implicitly the
page name, and, on a text line, verb and complement are indicated, separated
by a colon, each of them following the WikiWord conventions. This very simple
structuring scheme is complemented by the capability to insert formal queries
forged with the verbs in the text. They then are replaced by their result always
up-to-date. Moreover, WikiSAR can visualise the network of sentences though a
friendly graphical interface.

Rhizome [7] is clearly a technical architecture (option B1), with the idea to
implement a sort of algebra on subsets of RDF triples. It introduces specific

167

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

formal languages -ZML, RxML, which make Rhizome a flexible workbench to
manipulate semantic nets.

Ikewiki [8] outlines general, ambitious goals for a collaborative semantic en-
vironment. Authors analyse in a systemic way the relationship between users
acceptance, expressiveness, generality of semantic applications, following a B2
option. More than a Wiki, this project is a general purpose, users-oriented plat-
form for semantic information processing.

Semperwiki [9] is a simple, personal semantic system, with an option A1
structure-in- text approach similar to WikiSAR, and a strong emphasis on bring-
ing incentive to the semantic effort of the users (a B2 option).

A broader discussion of the Semantic Wiki field should also encompass the
relationship with the very close Semantic Desktop domain [10].

4 Some surprising things about Wikis and Semantic
Wikis

As stated in a previous paragraph, the Semantic Wiki is today a tiny domain,
but, in the same time, it sets some key challenges for the evolution of Information
Processing systems. It is de-facto a domain which harnesses all studies conducted
since more than 40 years in Software Engineering, Artificial Intelligence, Formal
Logic, Natural Language Processing. We must not take a narrow, short term
view of it. Instead, we must analyse this domain lucidly.

The tinkering aspect of some Wiki implementations (see for instance The-
ManySetsOfRulesToBuildWikiWordsAlsoCalledCamelCase) could at the end of
the day cause more harm than benefit, even if they contribute to the very nature
and initial success of wikis. A long term perspective for Semantic Wikis needs a
joint, sustainable effort from the community. At this point the semantic side of
Semantic Wiki should help: it is striking to realise that explaining the basics of a
semantic tool like Ideliance finally takes less time and space than detailing all the
folklore around Wikis. (WikiTag, WikiCategories, QuickSurvey, ReverseIndex,
RoadMap, WikiSingleWordProblem, WikiNamePluralProblem, WikiKeyWords,
etc, etc). Finally the written documentation on the Wiki unformal conventions
is thicker than the formal one on semantic tools. In this respect, we think it is
safer to carefully inject the Wiki spirit inside Semantic (Desktop) systems than
the opposite.

A surprising thing about Semantic Wikis is the quasi absence of reference to
the tools used daily by all professionals: Excel, PowerPoint (or their open source
equivalent). Such tool are in themselves excellent structuring tools which embed
a lot of semantics as compared to textual documents. We should make efforts
to bridge their actual semantics with the potential semantics of wikis, all the
more if we target personal or collaborative applications. A side point would be
the support of figures and simple arithmetic, which are ubiquitous in any kind
of business. If we do not address these points, the risk is to limit ourselves to
the development of encyclopaedia-like usages.

168

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

I am always very surprised to notice that the notion of inverse relation is
nearly absent in semantic tools. It was one of our first decisions in the design
of Ideliance. This trivial mechanism has nevertheless the capability to build
automatically symmetric cross-referencing and navigation from one card / page
to the other. It is also extremely useful to express queries and rules in a symmetric
way.

Finally, the constant reference as a kind of creed to RDF in most Semantic
Wiki designs seems to me overrated: A Semantic Wiki is neither more semantic
nor more wiki simply because it gives visibility to the RDF standard. A Se-
mantic Wiki user in the future should ignore the existence of RDF, as well as
PowerPoint users ignore that there exists a Metafile format which allows them
to cut / paste schemas from / to other office documents formats. RDF is key
to provide interoperability among the semantic applications, but is an irrelevant
concept for the end-user. For instance, the rock-bottom notion of blank node is a
semantic nonsense for the end-user. In the same spirit, the notion of unique URI,
often quoted as an advantage when placed inside a RDF statement, is a concept
which becomes less important for users, more familiar with information retrieval
through search engines than through the URI of their object of interest. The se-
mantics as perceived by users should differ from the one perceived by programs.
An argument for this statement is that many wiki designers forge new friendly
formal dialects, softer than RDF, to let users manipulate formal semantics. (See
for instance ZML [7])

5 Proposals for a sustainable fusion of Semantic and
Wikis

In the previous paragraph, we were voluntarily critical at some aspects of wikis,
semantic wikis and semantic systems. We would like now to make proposal to
cross-fertilise their advantages while minimising their potential weaknesses.

Transpose to semantics the wiki culture of a community taking care of
a knowledge-base The success of Wikipedia is the proof that some users are
diligent towards informal semantics. Let us encourage the same sort of people to
become as diligent towards formalised semantics. There exist potential semantic
(re)writers / translators which could translate natural language pages of a wiki
into a semantic format (in the same way publishers are used to have papers
translated from one natural language to another). Such added value would gen-
erate a networked snowball effect : reading the wiki would become more pleasant
and efficient, and casual writers would be tempted to turn themselves into se-
mantic writers to raise the level of retrievability and understandability of their
contribution.

Design carefully a specific level of semantic formalism for the end-
user As exposed above, this level should definitely depart from the Semantic

169

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Web standards (RDF, OWL) which, by essence, were semantic constructs for
machines, and not for people. Of course, this user-level semantics could made
operational and interoperable through the use of the Semantic Web standards,
but in a hidden way, in lower layers of the Internet machinery. This level should
also differ from the first generation of wiki conventions, while keeping their fresh-
ness.

Our experiment with the simple Ideliance formalism is a proof of existence
of this level. Designing and agreeing upon such a user-level semantic will not be
immediate, but it is a long term key success factor.

Make Semantic Wikis a companion of office tools instead of a sub-
stitute This is mandatory for the acceptance of Semantic Wikis in most of
economic sectors. Not only Semantic Wikis should import / export their con-
tents from / to office documents formats, but they also should be able to capture
in real time the semantics of graphical editing a presentation or a spreadsheet.
In the same way current wikis have a Text Processor-like face, there must exist
Semantic Wikis with a Spreadsheet-like face, a Presentation Editor face.

With the emerging XML standards to describe the contents of office docu-
ments, this objective is not out of reach.

Encourage a ”Semantic Inside“ policy for HTML pages The idea of
populating HTML pages with semantic statements, along with the capacity of
Semantic Wikis or Semantic Desktops to selectively download them seems very
simple, and capable of initiating a viral propagation of semantic statements. It
has been implemented as an ”Ideliance Inside“ feature, and also in [5]. We should
analyse why it does not exist in reality, and what conditions should be met to
start such a proliferation.

Use human-driven discovery and emergence mechanisms for vocabu-
lary / ontology congruence The whole semantic game is complex : it is a
continuum of interactions between a continuum of levels, e.g. from personal, to
workgroups, to corporate, to global level. The notion of ontology, ubiquitous in
the Semantic Web along the idea of URI uniqueness, needs to be reformulated
to meet this complexity.

”But where danger is, grows the saving power also.“ cited from ”Patmos“, by
Friedrich Holderlin.

Here the ”danger“ is ”people complexity“, as compared to the simple ”ma-
chines“ world of the Semantic Web. And thus the saving power is ”people“ too.

The alignment / congruence tools in the semantic wiki world should empower
users with the ultimate decisions concerning the meaning of terms, instead of
being blind black boxes trying to make some ”optimal“, global ranking of the

”best“ meaning. These tools must compute / discover emerging properties from
the whole knowledge base, let users make their choice, observe theses choices,
and capitalise from them for further recommendations.

170

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

In Ideliance, a first modest implementation of this emergence principle con-
sists of maintaining statistics on relations and complements of subjects of a given
category. This simple mechanism has already the capability to give, in real time,
an up-to-date view of the ”data model“ of the collection, without any a-priori
declaration.

In the same way the Sun Microsystems slogan is ”The Network is the Com-
puter“, we tend to say: ”Information is The System“. The system structure
emerges from the information it contains.

Take into account higher levels of semantics: Discourses, Argumenta-
tion, Rhetoric Any semantic writing act has an intention, an objective, expects
some results or benefits. Personal or collective semantic tools should help users
in such high-level tasks. This is for instance by the ABCDE format for scientific
publishing [1]. This paper is a first attempt to cleave the monolithic document,
by explicitly labelling paragraphs as Background, Contribution and Discussion,
along with general Annotation, and collection of useful resources in an Entities
paragraph.

The other nice side of this editing effort will be the reading side, which, after
some thinking, and working, will again yield a new editing activity.

We could call this proposal ”soft semantics“, since it keeps the very meaning
inside natural language sentences or paragraphs. It makes a step further than
metadata semantics à la Dublin Core, which takes the document as a monolith.
With Ideliance, we clearly are trying a ”hard semantics“ approach, which we
call also Extreme Explicit Semantics. (The Extreme Implicit Semantics would
be automatic natural language understanding)

If we merge ”hard semantics“ with the ABCDE approach, we could contem-
plate tools which not only would represent the semantics of each sentence, but
also the semantics of the making-up of all the sentences towards the author’s
intention. This would permit to represent things like: ”statement A is used by
author B as an example of statement C which is later used as a support for
statement D“. In a companion paper [11], we outline the notion of ”litteratus
calculus“ as an infrastructure to underpin such an approach.

6 Conclusion: Towards Intelligence Amplifiers

[6] advocates for immediate gratification for semantic writing. This idea of a fast
ROSI (Return On Semantic Investment) is well in pace with the Wiki world.
And this point is key for the acceptance of semantic wikis.

Coming back to our built-in contradiction (Semantic Wiki = Slow Quick),
we would like to point out another kind of gratification distillated by semantic
writing: it is a long term, deferred, -skole- reward : the pleasure of thinking, of
installing order, clarity in one’s knowledge and thoughts. The effort to decide
to create a new subject, to choose a category for it, to forge a new statement
linking two subjects is a mental exercise, which, day after day, amplifies your
intelligence. Clicking is not thinking.

171

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Acknowledgments:

I would like to thank the main contributors to Ideliance : Sylvie Le Bars2 for designing
the subtle tempo between slow and quick, click and think, and Stéphane Jean and
Denis Poisson for the technical design and implementation.

References

1. Waard, A.D., Oren, E., Haller, H., Völkel, M., Mikka, P., Schwabe, D.: The abcdef
format. In: Submitted to ESWC 2006. (2006)

2. Rohmer, J.: Lessons for the future of semantic desktops learnt from 10 years of
experience with the ideliance semantic networks manager. In: ISWC 2005 Galway,
Ireland. (2005)

3. Cunningham, W.: (Wiki design principles) available at http://c2.com/cgi/wiki?
/DesignPrinciples.

4. Sowa, J.F.: (Semantic networks) available at http://www.jfsowa.com/pubs/

semnet.htm.
5. Campanini, S., Castagne, P., Tazzoli, R.: Platypus wiki. In: 3rd International

Semantic Web Conference (ISWC) Hiroshima, Japan. (2004)
6. Aumueller, D., Auer, S.: Towards a semantic wiki experience – desktop integration

and interactivity in wikisar. In: ISWC2005 Semantic Desktop Workshop, Galway,
Ireland. (2005)

7. Adam, S.: Building a semantic wiki. IEEE Intelligent Systems 20(5) (2005)
8. Westenthaler, R., Schaffert, S., Gruber, A.: A semantic wiki for collaborative

knowledge formation. (In: Semantics 2005, Vienna, Austria, 24th November 2005)
9. Oren, E.: Semperwiki: a semantic personal wiki. In: Proceedings of the 1st Work-

shop on The Semantic Desktop, Galway, Irland. (2005)
10. First Semantic Desktop Workshop 2005, Galway, Ireland, S. Decker and J. Park

and D. Quan and L. Sauermann (2005)
11. Rohmer, J.: Litteratus calculus: a manifesto for a demographic way to build a

sustainable semantic web. In: ESWC. (2006)

2 see www.arkandis.com

172

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

A Wiki as an Extensible RDF
Presentation Engine

Axel Rauschmayer and Walter Christian Kammergruber

Axel.Rauschmayer@ifi.lmu.de

Walter.Kammergruber@gmail.com

Institut für Informatik
Ludwig-Maximilians-Universität München

Abstract. Semantic wikis [1] establish the role of wikis as integrators of
structured and semi-structured data. In this paper, we present Wikked,
which is a semantic wiki turned inside out: it is a wiki engine that is em-
bedded in the generic RDF editor Hyena. That is, Hyena edits (struc-
tured) RDF and leaves it to Wikked to display (semi-structured) wiki
pages stored in RDF nodes. Wiki text has a clearly defined core syntax,
while traditional wiki syntax is regarded as syntactic sugar. It is thus easy
to convert Wikked pages to various output formats such as HTML and
LaTeX. Wikked’s built-in functions for presenting RDF data and for
invoking Hyena functionality endow it with the ability to define simple
custom user interfaces to RDF data.

Keywords: Semantic wiki, RDF, wiki engine, wiki syntax, RDF presentation.

1 Introduction

What would later be called Wikked started as a project about one and a half
years ago, when we discussed combining two of our favorite technologies: RDF
and wikis. We never thought that this combination would carry us as far as it
did (which we think bodes well for the newly-named community of “semantic
wikis”): Initially, we had an RDF editor called Hyena and just wanted to mark
up and link pages with it. So we implemented the small wiki engine Wikked
and embedded it in Hyena. In the end, Wikked grew far beyond its basic func-
tionality and is now even used for constructing small custom user interfaces that
display and manipulate RDF. The current focus of Wikked is to complement
the GUI-based Hyena and not to replace it with a full-blown web-based RDF
editor. One can, however, run Hyena in a web server mode and have Wikked
act as a “normal” wiki (Sect. 5).

This paper is directed at members of the semantic wiki community, and thus
we neither explain RDF [2, 3] nor wikis [4]. It has the following structure: The
next section describes how Wikked fits into the whole of the Hyena picture and
what Fresnel lenses are. Sect. 3 explains the core components of Wikked, Sect. 4
walks the reader through an example. Sect. 5 illustrates Wikked’s advanced
features such as an interactive command line and a web mode. We end the
paper by giving related work, future research and a brief conclusion.

173

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 1. A typical Hyena window: To the left is a standard view on the file system.
Center bottom is the editor for the currently open file, center top is a view that lists all
RDF nodes in that file. The editor shows the content of the currently selected resource.
To the right, there is a view displaying the context of the selected resource: incoming
links and functions that can be applied to it.

2 Background

2.1 Hyena

Hyena is a generic RDF editor that has been implemented as a plugin for
the Eclipse Rich Client Platform [5] Fig. 1 shows what a typical Hyena en-
vironment looks like. Hyena’s internal architecture is depicted in Fig. 2. Sup-
port for an RDF vocabulary in Hyena is provided by plugins called vodules
(vocabulary modules). Vodules take care of three different facets of RDF edit-
ing: First, a vocabulary has associated declarative data such as OWL constraints,
rdfs:comments and rdfs:labels. Accordingly, each vodule can contribute a sub-
graph1; every container (or graph) of RDF data that is managed by Hyena is
composed of several subgraphs. Second, there will always be RDF data formats
that cannot be meaningfully edited with a generic editing mechanism. Thus,
vodules can implement their own custom widgets for node editing. Third, im-
perative knowledge might be needed for manipulating RDF data. Vodules add

1 The reader might know subgraphs under the moniker named graphs [6]. We have
emulated this feature before implementations in RDF engines (such as Sesame [7]
became available, which is why we are still using this legacy name.

174

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Vodule for editing RDF
nodes with wiki content

Wikked

"Vocabulary Module"
that packages
everything that is
needed to edit a specific
RDF vocabulary

Vodule

Public functionality, e. g.
for manipulating RDF
nodes

Function

Sometimes called a
"named graph", contains
declarative data such as
lenses and namespaces

Subgraph

GUI widget for editing a
certain kind of node

Displayer

contributes*

Vodule for editing lenses
Fresnel Lenses

Hyena User Interface Components

contributes

* contributes

*

is a

is a

Fig. 2. The main components of Hyena’s user interface are functions, subgraphs and
displayers. A vodule supports editing of RDF vocabularies by making cross-cutting
contributions to each group of components. Vodules for Fresnel lenses and Wikked
pages provide editing support for these vocabularies.

these to Hyena as functions. Note that functions can both be accessed via the
GUI and as Wikked commands.

2.2 Fresnel Lenses

The Fresnel Display Vocabulary [8] is the foundation of Hyena’s generic editing
facilities. This vocabulary is used to define how nodes of a given type should be
displayed. One such definition is called a Fresnel lens. The most basic version
of a lens needs to state what properties should be displayed and in what order.
As an example, here is a minimal lens for the “Friend of a Friend” vocabulary
(FOAF, [9]) written in Notation 3 [10] syntax (taken and abridged from [8]):

:foafPersonDefaultLens rdf:type fresnel:Lens ;

fresnel:classLensDomain foaf:Person ;

fresnel:showProperties (foaf:name

foaf:surname) .

We have given this lens node the URI :foafPersonDefaultLens and as-
signed it the type fresnel:Lens. The lens applies to nodes of type foaf:Person
and displays first and last name (in that order; the value of fresnel:showProperties
is an rdf:List). Advanced Fresnel features include more sophisticated format-
ting (display a property value as plain text, a link, an image, . . .) and negative
definitions (display all properties except X). Fresnel lenses have the advantage
that one can deliver data together with instructions on how it is to be displayed.
The result of applying a lens to a node is called a projection in Hyena.

175

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3 Wikked and WITL (Wikked Template Language)

Wikked is the complete wiki engine, WITL the formal language used for mark-
ing up a page. In this section, we will go into details about the design decisions
we have taken. They were based on several requirements we had: Initially, We
had the RDF editor Hyena and wanted to add notes in rich text. The simplest
solution was to start with plain text and support some wiki markup such as
headings, lists, tables and text styles. Soon it became obvious that it would be
nice to have the ability to display RDF data inside these nodes. For that, we
needed a more complete syntax and gave WITL a bracket-based core syntax
reminiscent of XML. We still support wiki markup by translating it to the core
syntax. RDF integration gave us the ability to refer to other nodes. As wiki
pages were just another kind of node, we arrived at the most basic wiki func-
tionality: markup and linking. Having a syntax with a proper LL(k) grammar
makes it easy to translate our notes to different target markup languages: Apart
from the obvious choice of HTML for rendered display of a note, we can also
produce LaTeX. This proved handy for situations where one does some quick
brainstorming with bullet lists and headings and is able to move on to LaTeX as
a more professional publishing format later. The data we presented using WITL
was still static. We wanted to add more interactivity and were able to do so by
making it easy to extend the WITL vocabulary in Java and by opening up the
rest of Hyena to Wikked. Now WITL commands allow one to apply functions
to RDF nodes.

The Case for Plain-Text Markup. The most obvious reason we went with plain-
text editing is that it is much easier to implement than a true WYSIWYG editor.
Hyena’s users are very technical, so it was to be assumed that they would be able
to handle the challenge. Later, we will still be able to add a WYSIWYG editor.
But as WITL is to be frequently extended, typing a plain text is paradoxically
often more usable than visual editing. LaTeX’s ongoing popularity is testament
to that. Furthermore, plain text is still the most convenient, most widely used
and most cross-platform data format. For example, even if you know nothing
about wiki markup, you are still bound to use it if you are sending an email
with a bullet list from a Windows computer to a Linux computer and store it
in a version control system there. One final consideration is that WITL has to
be easier to type than XML, which we otherwise could have used instead. We
start this section with a quick example and follow up on it with a more detailed
explanation.

3.1 WITL by Example

Before we properly introduce the syntax, we give an example of WITL markup:

The {i:core syntax} uses {b:braces} to delimit markup directions.

Simple links follow the same scheme: {http://hypergraphs.de/}.

Further arguments are separated by carets:

176

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

{http://hypergraphs.de^Hypergraphs web site}.

- Then there is also wiki-inspired syntactic sugar

that is translated into the core syntax.

- Bullet lists, **bold**, ~~italics~~ etc. all work.

3.2 Core WITL

At heart, all generic markup languages look very similar: Be it XML, LaTeX or
Lisp’s S-expressions [11], there are always nested named terms. If you didn’t like
S-expressions being part of this last list (because they are not really a markup
language), you can already guess at the hybrid nature of WITL: On one hand,
commands should be easy to type. On the other hand, text will usually domi-
nate, whereas in, say, Java, it can only appear within quotes. So what will our
nested terms look like? As they have to be easy to type, XML’s named clos-
ing brackets are out and terms where only the beginning is named are in, as
in simple LaTeX commands and S-expressions. Let us start by putting braces
around URLs which have to be easy to embed if Wikked is to be worthy of
the “wiki” moniker. We opted for braces, because they appear less frequently in
plain text than parentheses and square brackets2. We then generalize this syntax
to {tag:argument} where http or ftp of an embedded link is just another tag.
To allow more than one argument, we introduce the caret “^” as an argument
separator. Again not for esthetic reasons, but because it appears rarely in plain
text (as opposed to the ampersand &, less-than < or greater-than >) and because
we will use some of the other candidates (such as the pipe symbol |) for wiki
markup later. This leads us to expressions such as

Text in {b:{i:bold italics}}

A link to {a:http://external.com^External Corp.}

Comments are written as {* Comment *}. Next, if we are to integrate Java,
we need a way to express method invocations: creating a list (with the String el-
ements ‘‘a’’ and ‘‘b’’) and invoking method add on it, to append the element
‘‘c’’, is expressed as {{List:a^b}add:c}.

The final two constructs are raw text and pairs. Raw text is for circumventing
WITL when it isn’t powerful enough: whereas typical plain text will have critical
characters (such as less-than in XML) of the target markup language escaped,
raw text is taken verbatim. Therefore one can directly add code in the target
language. Raw text syntax is [[[raw text]]]. Pairs have two roles: We use
them as a basic data structure, among other things to encode maps and we
use them for specifying options for a function without getting lost in positional
parameters. These two roles are quite related: options are passed to a function as
a separate argument containing a map from string to arbitrary data (specified
by the user as a sequence of pairs). Pairs are written as {key=value}. Fig. 3
gives an overview of the core syntax.

2 Additionally, we want to keep the option open of using square brackets for citations.

177

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Plain text is default, the following constructs are always
started by special character.

{a:url^text} a wikked function, most HTML tags are defined
{http://foo.com} links fit naturally into the syntax scheme
{{List:xxx}add:12} method invocation
{key=value} a pair (e. g. for optional arguments)
[[[raw]]] ”raw” or unescaped text; use to insert HTML
{* Comments *} ignored...
{:varName} synonym for {get:varName}

Fig. 3. The core syntax of WITL.

3.3 Wiki Markup

While the syntax we have introduced so far is very regular and easy to define, for
some of the more commonly used markup, it would be nice to have more “visual”
text markup, just like traditional wikis have. Note that for many constructs, this
syntax is line-based and largely incompatible with our term/bracket-based core
syntax. As we don’t want to lose our core syntax, parsing happens in two stages
in Wikked: First, we parse the core terms. Second, we parse lines inside the
terms and translate traditional wiki markup to core WITL. While a sequence
of lines always starts when a term opens and ends when it closes, a single line
can contain both plain text and nested terms. A plain text newline finishes a
line. Through this translation step, wiki markup is syntactic sugar for the core
syntax. Fig. 4 shows what markup is available. We have intentionally left out
breaks and separator lines as these can be cleanly expressed with normal WITL
as {br} and {hr}.

3.4 Java Integration

We initially experimented with turning WITL into a full-blown programming
language, but it turned out that that was very cumbersome. We didn’t have
the development tools we were used to (life without automated refactoring is
painful) and WITL syntax is more suited for markup than for programming.
As we needed to bridge over to Java anyway3, we chose to stay very close to
Java when it came to defining WITL’s semantics and libraries: WITL is a func-
tional language whose values are Java objects. For example, when evaluating
the expression {func:[[[<arg1>]]]^<arg2>} the first argument is passed to
the function func as the Java text string ‘‘<arg1>’’, while the second argu-
ment is escaped first and then also passed as a string. Escaping depends on
the currently used target language; for HTML the second argument becomes
‘‘<arg2>’’. Functions cannot be defined (only applied) in pure WITL.
They are defined by registering Java objects with the WITL interpreter. Every
method in such an object hat has been marked with a special annotation [12] is

3 It is, after all, the implementation language of Wikked and Hyena

178

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

==== Heading Level 1 ==== Heading Level 1
=== Heading Level 2 === Heading Level 2

== Heading Level 3 == Heading Level 3

= Heading Level 4 = Heading Level 4

Paragraphs

are

separated by

blank lines

Paragraphs are

separated by blank lines

Tabs lead to

indented (quoted) text

Tabs lead to

indented (quoted) text

bold bold
~~italics~~ italics
’’teletype’’ teletype

- Bullet lists

- can be

unordered

+ or ordered.

+ One can also nest them.

• Bullet lists
• can be unordered

1. or ordered.
2. One can also nest them.

: Colons

are for definition lists with

: term

and definition

Colons
are for definition lists with

term
and definition

|| Table | Heading |

| cells | in the |

| table | body |

Table Heading

cells in the

table body

% single-line comment

Fig. 4. Wiki markup supported by WITL.

afterwards visible as function in WITL. Before applying a function, WITL com-
pares the number and type of the function arguments to the method signature
and makes sure that both correspond. This mechanism facilitates unit-testing

179

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

and building new functions by composing existing ones. In both cases one can
stay in Java and does not have to invoke WITL in any way.

3.5 RDF Integration

A wiki goes from mere text to hypertext by allowing one to link pages. There
are two directions of RDF integration in Wikked: First, wikked pages live in-
side RDF, they are normal RDF nodes, with attached literals that store the
page content. We are discouraging the use of blank nodes for wiki pages and
automatically generate a URI node when the user wants to create a new page4.
The reason for this is that blank nodes cannot (stably) be exported as public
locations. Interestingly, RDF frees us from purely name-based identification of
pages. At the cost of slightly increased complexity, we got rid of problems such
as renaming, support for multiple languages and disambiguation.

Second, one can access RDF content with WITL. The most basic function-
ality here is to link to other nodes which can by either other Wikked pages or
arbitrary RDF content. Hyena uses the types of a node to determine whether
they should be displayed as wiki pages or as something else. Now, where tra-
ditional wikis embed the links to other entities inside the text, this is not a
good option for RDF; renaming a node would result in the connection being
broken. The solution is to reify that connection in RDF. This happens in two
complementary ways:

– Subject linking: Whenever the user has one specific RDF node in mind, he
just pastes its URI into the WITL source; e. g. as {subj:http://my-node.com}.
Before saving, Wikked converts the source in the following manner: The
page node is used as a rdf:Seq of all nodes referenced by subject links.
Therefore, the first subject link is the value of property rdf:_1, the second
one of property rdf:_2, etc. The argument of the subj function is then
changed to be the Seq index. If the above example is the first subject link,
it will be changed to {subj:1}. All this happens transparently to the user:
Before the user edits the page the next time, we put the URIs back in. We
have thus moved the actual link out of the source code into a triple. Insert-
ing the link target into the source on-demand guarantees that it is always
current. Fig. 5 shows subject linking in use.

– Object linking: If the user has attached a set of RDF nodes, he specifies
the property he has used, as in {obj:http://my-predicate.com}. When
displaying the page, Wikked lists all values of that property. Fig. 9 is an
example of object linking.

3.6 Skins

Skins are a feature that has been created for the web (or non-embedded) person-
ality of Wikked. When creating web sites, it is often desirable to have reusable

4 A page node can be easily renamed to a neater URI at any time.

180

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

frames for certain subsets of the pages. This is what Wikked provides with
skins: The current display state is denoted as a stack of page IDs (namely, their
RDF nodes). The bottom of the stack is the actual content, an arbitrary amount
of skins can be pushed on top of it:
Index Kind of page
. . . etc.
2 meta-skin (e. g. content that is the same for the complete web site)
1 skin or meta-page (e. g. a frame for one section of a web site)
0 base page (actual content, without user interface frames)

Rendering of a composite page is performed by going through the stack,
starting with the topmost page. Each page is evaluated and passes evaluation on
to the next stack element with a special function. The result of the evaluation is
usually a text string. This kind of nesting can be compared to around methods
in CLOS or super calls in Java. While navigating through the site via links, each
transition can specify to either remove or replace elements of the page stack.
That is, one can display the same page with a different skin, a different page
with the same skin, (prudishly) not show any skin, etc. In case a skin wants to
display properties of the content page, we allow it to access the page stack. The
index of the content page is always 0, the first skin has index 1, the meta-skin
has index 2 and so on. Whenever one starts up Wikked without specifying what
page to display, it fills the stack with a default URI for the start page (index 0)
and the start skin (index 1).

4 Example

(a) Editing the page (b) Displaying the page

Fig. 5. (Left) We pick the title “To Do” for the new page and type the actual content
in the text field at the bottom. The empty subject link will get us the option to create
a new page. (Right) Using the combo box in the top right corner, we switch the view
from WITL source to rendered HTML.

– Let us say we want to use Wikked to create a page with things we have
to do. We use the standard Hyena command for creating a new node and

181

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

assign it the type wikked:Page. Afterwards, we can select a (type-sensitive)
displayer for entering the wiki text. We decide on a fitting title for our page
and type the text containing the to-do items (Fig. 5(a)). Note that we have
not used core WITL, but rather the wiki markup for bullet lists. If we leave
the subject argument empty, Wikked will display a link with which we
can create a new page node. Next, we pick a different view of the currently
displayed node: whereas up to now, we have looked at WITL source, we now
switch to rendered HTML (Fig. 5(b)).

– Before we continue with sketching what we want to tell Harry, we decide
that it makes sense to refer him to two papers of ours. This allows us to
put Wikked’s RDF integration to use: We parse our BibTeX bibliography
with the external BibTeX-to-RDF converter “bibtex2rdf” [13]. Then we use
the Fresnel display vocabulary [8] to tell Hyena how to display the BibTeX
entries. A Fresnel lens declares (per RDF schema class) what properties to
display and in what order. Hyena has a built-in lens editor, so creating the
lens only involves the following four simple steps: First, create a new lens.
Second, add a new property specifying what class this lens applies to. Third,
use a predefined Hyena command to collect all used properties from the
RDF instances in our RDF graph. Fourth, remove those properties that are
to be ignored (none in the example) and rearrange remaining ones via drag
and drop until we are satisfied with their order (Fig. 6).

Fig. 6. Hyena has a built-in editor for Fresnel lenses. This figure shows the finished
lens where the properties have been automatically filled in by looking at all instances of
bibtex:InProceedings. The boxes to the right of the predicate names can be dragged
and dropped to rearrange the order in which properties will be displayed when using
the lens.

– After we have defined the Lens, we want to try it out. First, we use a Hyena
view to show us all instances in the current RDF graph that our lens applies
to (its projections, Fig. 7). Then we click on a list item and have its contents
displayed as defined by the lens (Fig. 8).

182

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 7. The “Projections” view in Hyena allows us to list all instances that
can be displayed with a certain lens. Here we are displaying all instances of
bibtex:InProceedings.

Fig. 8. One projection of our InProceedings lens. In the top right corner you can see
that using the lens is just another way of displaying a node.

– Now we can create the new Wikked page to hold the citations for Harry,
add rdfs:seeAlso properties referencing the BibTeX entries, and write a
corresponding object link in WITL (Fig. 9(a)). The rendered result is shown
in Fig. 9(b).

– To conclude, we do something a little more fancy: we want to have the same
set of citations as before, but this time we want them displayed in a bullet
list. Furthermore, if someone clicks on a link, we want to search Google for
the paper title, in an external browser. This looks as follows:

Click on any of these papers to search for them via Google:

{ul:

{obj:rdfs:seeAlso^^

{li: {evalLater:{present:{:ANCHOR}}

^{util.google:{literal:{:bibtex:title}}}} } } }

We use an extended version of the object-linking function obj which has
three arguments where the first one contains a property URI, the second op-
tions and the third an expression that will be re-evaluated once for each ob-
ject. During each evaluation, the property values of the current object will be
bound to WITL variables. Within the third argument, function evalLater
displays a link (whose text is the first argument) and postpones evaluating
its second argument until after the link has been clicked. The function we
postpone is util.google which opens an external browser window with the

183

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

(a) Editing the page (b) Displaying the page

Fig. 9. (Left) We are using an object link to encode the list of citations we want to
tell Harry about. (Right) The citation list rendered via HTML.

result of a Google query. Furthermore, the helper function present lets us
display a node as “prettily” as possible, i. e. it considers display aids such
as an attached rdfs:label. Function literal extracts the plain text of a
literal. Note that we cannot use wiki markup for iteratively creating the bul-
let list, because the scope of wiki markup does not extend beyond a single
function brace.

5 Command Line and Web Serving

Fig. 10. An interactive session with the WITL command line: We evaluate bold
markup in two variations; present a prettified version of a wiki page node; and show
how editing is added to a page (it can be added to sets of pages via a skin). Note that
one can make out in the produced HTML that the start page is currently selected in
Hyena. Output is shown as it would be encoded in WITL.

Hyena also comes built-in with a Wikked command line where one can
interactively execute WITL code (Fig. 10). What node is currently selected in
Hyena is also reflected in the evaluation environment of the command line, so
one can explore what source code will look like when evaluated “inside” a page.

Hyena, and thus Wikked, can be started in different modes: It can be
started with Eclipse, as a plug-in. But it can also be started stand-alone, ob-
viously with limited functionality. That last mode makes more sense when one

184

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 11. Hyena’s document hierarchy: First is a container www that serves static web
pages, second is the configuration container config, last is an Eclipse container with
all currently open documents (currently, only “semwiki.rdf” is open). Every container
is accessible via its URI, for example, you are currently seeing the answer to a GET
request to the configuration container.

considers that Hyena can also be used for web-serving: either via Jetty, a small
embeddable web server or as a servlet5. Jetty can be activated in conjunction
with Eclipse. As a web server, Hyena manages the currently open files in a
named hierarchy of containers. A unique name plus the server address results
in a component having a unique URI. These URIs are used in Hyena’s ReST-
based web service [14, 15] API. While each container can provide a customized
reaction to web requests the most common use cases are: GET requests display
web pages and download data, PUT requests upload RDF files (including wiki
definitions), POST requests allow one to react to form input and DELETE re-
quests remove containers. Several standard containers6 are available: container
www serves static web pages stored in the standard Hyena directory, container
config provides configuration and status information about currently active con-
tainers (Fig. 11) and, if Eclipse is running, there is an eclipse container that
publishes all currently open Hyena documents. For example, we can display the
running example in the web browser by clicking on semwiki.rdf.

6 Related Work

EclipseWiki [16] is a plugin for Eclipse that allows one to edit text files as wiki
pages and to embed links to Eclipse resources. In contrast, Wikked is more
specialized: It has RDF integration and can even link to markers inside files.

ZML [17] from the Rhizome Wiki has markup rules that are similar to ours,
but differs in two important aspects: First, it can “natively” express full HTML
which Wikked foregoes in order to support both LaTeX and HTML; one can
still use raw text as a last resort in Wikked. Second, ZML’s syntax is purely line-
based where WITL’s syntax is a hybrid of bracketed and line-based constructs.

XSDoc Wiki [18] is used for integrating different development artifacts inside
a wiki. Instead of RDF, it normalizes all data as XML and has powerful import
5 Even with Jetty, Hyena establishes connection through a servlet.
6 More containers can be added programmatically at any time.

185

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

facilities. XSDoc has more in common with Wikked than is apparent at first
glance: Hyena partly specializes in using RDF for software engineering. One
can, for example, reify Java source code locations as RDF nodes and refer to
them in Wikked. While we do not have XSDoc’s flexible format support, we do
think that RDF is a better data format when it comes to linking and by using
Eclipse to track locations, our linking becomes even more robust.

In the Wiki-Templates paper [19], the authors prominently express the need
to support structure in wikis. Thus Wiki-Templates provide sophisticated sup-
port for structured data entry. Lenses provide much of the same functionality
for Wikked, but projections are not (yet) embeddable inside a wiki page. Fur-
thermore, storing data in RDF has the advantages of being clearly defined and
standardized, as opposed to the custom approach taken by Wiki-Templates.

7 Future Research

One way we could go with Hyena is to put more emphasis on its currently
underdeveloped web-serving abilities. It would have to be based on Ajax [20] (or
Comet [21]) and fully support Fresnel lenses and SPARQL queries. Additionally,
we do not currently provide any way of authentication or encryption. Finally, it
would be nice to combine blog and wiki into something that has been called a
Bliki [22]. Because Wikked is RDF-based and thus highly structured, this would
be a very natural extension, as opposed to some of the kludges that currently
exist.

8 Conclusion

In this paper, we have shown how Hyena and Wikked tackle the problem of
integrating structured and semi-structured data. This problem is very pertinent
to wikis and even more so to semantic wikis. Our answer is separation of con-
cerns: Hyena edits (structured) RDF data, whereas the embedded wiki engine
Wikked is responsible for displaying (semi-structured) wiki content “inside”
RDF nodes. We found that this separation of concerns has great usability ad-
vantages. It also turns the typical semantic wiki inside out: the wiki is embedded
in an RDF editor and not the other way around. Wikked has been adapted to
RDF in one important way: links to data (including other pages) are reified as
true RDF relations and not hidden in the wiki text. That means that Wikked
pages are relatively robust regarding changes in the RDF such as node renam-
ing. Finally, Wikked further enhances Hyena by letting the user invoke Hyena
functionality from within a wiki page. As a result, one can make wiki pages more
interactive.

Acknowledgements. The authors would like to thank Hubert Baumeister for
introducing them to Wikis, when they were still an insider tip; and the SemWiki
workshop reviewers for their comments and their contributions to the section on
related work.

186

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

References

1. Wikipedia: Semantic Wiki. http://en.wikipedia.org/wiki/Semantic Wiki (2006)
[Online; accessed 2006-05-02].

2. Rauschmayer, A.: A Short Introduction to RDF for Software Engineers. (2005)
3. Manola, F., Miller, E.: RDF Primer, W3C Recommendation.

http://www.w3.org/TR/rdf-primer/ (2004)
4. Leuf, B., Cunningham, W.: The Wiki Way: Collaboration and Sharing on the

Internet. Addison-Wesley (2001)
5. Eclipsepedia: Eclipse Rich Client Platform.

(http://wiki.eclipse.org/index.php/Rich Client Platform) [Online; accessed
2006-05-02].

6. Carroll, J., et al.: Named Graphs. (http://www.w3.org/2004/03/trix/) W3C In-
terest Group.

7. Broekstra, J., Kampman, A., Mika, P., et al.: Sesame Home Page.
(http://www.openrdf.org/)

8. Semantic Web Interest Group: Fresnel - Display Vocabulary for RDF.
http://www.w3.org/2005/04/fresnel-info/ (2005)

9. : The Friend of a Friend (FOAF) project. (http://www.foaf-project.org/) [Online;
accessed 2006-05-02].

10. Berners-Lee, T.: Notation3 (N3) a Readable RDF Syntax.
(http://www.w3.org/DesignIssues/Notation3.html)

11. Wikipedia: S-expression. http://en.wikipedia.org/wiki/S-expression (2006) [On-
line; accessed 2006-05-04].

12. Bloch, J., et al.: A Metadata Facility for the Java Programming Language (2002)
Java Specification Request 175.

13. Siberski, W.: bibtex2rdf - A Configurable BibTeX to RDF Converter.
(http://www.l3s.de/ siberski/bibtex2rdf/)

14. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

15. Prescod, P.: Second Generation Web Services.
http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html (2002)

16. Walton, L., Walton, C.: Eclipse Wiki Editor Plugin.
(http://eclipsewiki.sourceforge.net/)

17. Liminal Systems: ZML (Zippy Markup Language).
(http://www.liminalzone.org/ZML)

18. Aguiar, A., David, G.: WikiWiki Weaving Heterogeneous Software Artifacts. In:
Proc. Int. Symp. Wikis, ACM Press (2005)

19. Haake, A., Lukosch, S., Schümmer, T.: Wiki Templates—Adding Structure Sup-
port to Wikis on Demand. In: Proc. Int. Symp. Wikis, ACM Press (2005)

20. Garrett, J.J.: Ajax: A New Approach to Web Applications.
http://www.adaptivepath.com/publications/essays/archives/000385.php (2005)

21. Russell, A.: Comet: Low Latency Data for the Browser.
http://alex.dojotoolkit.org/?p=545 (2006)

22. Fowler, M.: What is a Bliki? http://www.martinfowler.com/bliki/WhatIsaBliki.html
(2003)

187

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

A Semantic Wiki for Mathematical Knowledge

Management

Christoph Lange1 and Michael Kohlhase2

1 Informatik, Universität Trier, lange@castor.uni-trier.de
2 Computer Science, International University Bremen, m.kohlhase@iu-bremen.de

Abstract. We propose the architecture of a semantic wiki for collabo-
ratively building, editing and browsing a mathematical knowledge base.
Its hyperlinked pages, containing mathematical theories, are stored as
OMDoc, a markup format for mathematical knowledge representation.
Our long-term objective is to develop a software that, on the one hand,
facilitates the creation of a shared, public collection of mathematical
knowledge (e.g. for education). On the other hand the software shall serve
work groups of mathematicians as a tool for collaborative development
of new theories.

1 A Semantic Web for Science and Technology via
Mathematical Knowledge Management (MKM)

The Internet plays an ever-increasing role in our everyday life, and science is no
exception. It is plausible to expect that the way we do (conceive, develop, com-
municate about, and publish) mathematics will change considerably in the next
ten years. In particular, most of the mathematical activities will be supported
by mathematical software systems (we will call them mathematical services)
connected by a commonly accepted distribution architecture. It is a crucial but
obvious insight that true cooperation of mathematical services is only feasible
if they have access to a joint corpus of mathematical knowledge3. Therefore, a
central prerequisite for this is the creation of a technology that is capable to
create, maintain, and deploy content-oriented libraries of mathematics on the
web. The world wide web is already now the largest single resource of mathe-
matical knowledge, and its importance will be exponentiated by the emerging
display technologies like MathML, which integrates LATEX-quality presentation
into the hypertext and multimedia capabilities of the WWW.

The Semantic Web is a Web of data for applications , just as the WWW
is a web of documents for humans.

If we extend this vision of Tim Berners-Lee’s to mathematics on the web,
many services come into mind:
3 Be it one central knowledge base or many of them glued together through an ex-

change mechanism

188

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

1. cut and paste on the level of computation (take the output from a web search
engine and paste it into a computer algebra system).

2. automatically checking published proofs, if they are sufficiently detailed and
structured.

3. math explanation (e.g. specializing a proof to an example that simplifies the
proof in this special case).

4. semantic search for mathematical concepts (rather than keywords): “Are
there any objects with the group property out there?”

5. data mining for representation theorems: “Are there undiscovered groups
out there?”

6. classification: given a concrete mathematical structure, is there a general
theory for it?

All of these services can currently only be performed by humans, limiting the
accessibility and thus the potential value of the information. On the other hand,
the content-oriented mathematical libraries can only be generated by humans,
as it has been proved by the successful PlanetMath project4, which features free,
collaboratively created entries on more than 8,000 mathematical concepts. Plan-
etMath, however, is not completely machine-understandable. There is a fixed set
of metadata associated with each article, including its type (definition, theorem,
etc.), parent topic, Mathematics Subject Classification, synonyms and keywords,
but the content itself is written in LATEX and can only be searched in full-text
mode.

2 Semantic MK Markup with OMDoc

We will make use of the structural/semantic markup approaches using for-
mats such as OpenMath [BCC+04], MathML [ABC+03], and OMDoc (Open
Mathematical Documents [Koh06]), the latter of which embeds and extends
the former ones. These formats, constituting the state of the art for represent-
ing mathematical knowledge, are now used in a large set of projects in auto-
mated theorem proving, eLearning, ePublishing, and in formal digital libraries.
OMDoc builds on a semantic representation format for mathematical formu-
lae (OpenMath objects or Content MathML representations) and extend this
by an infrastructure for context and domain models from “formal methods”.
In contrast to those, these structural/semantic approaches do not require the
full formalization of mathematical knowledge, but only the explicit markup of
important structural properties. For instance, a statement will already be con-
sidered as “true” if there is a proof object that has certain structural properties,
not only if there is a formally verifiable proof for it. Since the structural proper-
ties are logic-independent, a commitment to a particular logical system can be
avoided without losing the automatic knowledge management which is missing
for semantically unannotated documents. Work on the OMDoc format shows
that most added-value services in knowledge management do not need tedious
4 http://www.planetmath.org, see also [Kro03]

189

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

formalization, but can be based on the structural/semantic level. OMDoc as-
sumes a three-layered structure model for semantic representation formalisms:

Object level: represents objects such as complex numbers, derivatives, equa-
tions etc. Semantic representation formats typically use functional character-
izations that represent objects in terms of their logical structure, rather than
specifying their presentation. This avoids ambiguities which would otherwise
arise from domain specific representations.

Statement Level: (natural/social/technological) sciences are concerned with
modeling our environment, more precisely with statements about the ob-
jects in it. We can distinguish different types of statements: model assump-
tions, their consequences, hypotheses, and measurement results. All of them
have in common that they state relationships between scientific objects and
have to be verified or falsified in theories or experiments. Moreover, all these
statements have a conventionalized structure, such as Exercise, Definition,
Theorem, Proof, and a standardized set of relations among each other. For
instance, a model is fully determined by its assumptions (also called ax-
ioms); all consequences are deductively derived from them (via theorems
and proofs), and therefore their experimental falsification uncovers false as-
sumptions of the model.

Theory/Context Level: Representations always depend on the ontological
context; even the meaning of a single symbol5 is determined by its context,
and depending on the current assumptions, a statement can be true or false.
Therefore the sciences (with mathematics leading the way) have formed the
habit to fix and describe the situation of a statement. Unfortunately, the
structure of these situation descriptions remains totally implicit, and can
therefore not be used for computer-supported management. Semantic rep-
resentation formats make this structure explicit. In mathematical logic, a
theory is the deductive closure of a set of axioms, i.e. the (in general in-
finite) set of logical consequences of the model assumptions. Even though
this fully explains the phenomenon context in theory, important aspects like
the re-use of theories, knowledge inheritance, and the management of the-
ory changes are disregarded completely. Therefore, formalisms with context
level use elaborate inheritance structures for theories, e.g. in form of ontolo-
gies in the Semantic Web or in form of “algebraic specifications” in program
verification.

An important trait of the three-layer language architecture is the inherent
dependency loop between the object and theory levels mediated by the state-
ment level: the objects obtain their meaning from the theories their functional
components are at home in, and the theories are constituted by special state-
ments, and in particular the objects that are contained in them. Making these
structures explicit enables the mechanization and automation of knowledge man-
agement and the unambiguous, flexible communication of mathematical objects

5 e.g. the glyph h as the height of a triangle or Planck’s quantum of action.

190

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

and knowledge that is needed for meaningful interoperability of software systems
in science.

3 Cross-Fertilization of MKM and Wiki

Even though the work reported here was initially motivated by solving the MKM
author’s dilemma (see below), we contend that the new application area MKM
can also contribute to the development of semantic wikis.

3.1 Benefits of a Wiki for MKM

As any semantic or traditional wiki, a wiki environment for MKM encour-
ages users to collaborate: Non-mathematicians can collaborate in creating a
“Wikipedia of mathematics” by compiling the knowledge available so far, while
scientists can collaboratively develop new theories. However, to encourage users
to contribute, wiki-like openness to anybody probably won’t suffice. Unlike the
text formats used by common semantic wikis, the OMDoc format makes the
fine-grained semantic structure implicit in the text explicit in the markup, mak-
ing it tedious to author by hand. Moreover, only after a substantial initial invest-
ment (writing, annotating, and linking) on the author’s part, the community can
benefit from the added-value services supported by the format — e.g. the cre-
ation of customized textbooks [MS04]. If author and beneficiary of such services
were different persons, though, only few persons would be willing to contribute
to a knowledge base. This “MKM author’s dilemma” [KK04] can be overcome
when the authors themselves are rewarded for their contributions by being of-
fered added-value services, which improve immediately the more annotations
and cross-references the users contribute, — for example a facility for naviga-
tion through the knowledge base along paths of semantic relations between the
theories, which are computed from the OMDoc document collection.

Furthermore, mathematicians developing theories will be assisted to retain
an overview of theory dependencies in order not to break them. Social software
services will further utilize the semantic information available from the theo-
ries and from tracking the user interaction log (“Who did what on which page
when?”).

3.2 An Alternative ‘Semantic Web’

Most semantic wikis are based on ideas and techniques from Berners-Lee’s Se-
mantic Web. In accordance with the general definition in the introduction, the
Semantic Web uses RDF triples [LS99] to describe resources such as XML frag-
ments in documents and the background knowledge in ontologies to draw in-
ferences about their content. Note that the Semantic Web makes a conceptual
division between data (arbitrary objects — called “resources” — that can be
identified by URI references; usually XML fragments) and context (encoded in
topic maps, or an ontology language like OWL [W3C04] or KIF [Gea92]). In

191

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

contrast to this, content/context markup systems like OMDoc consider scien-
tific knowledge as the primary data and take the context to be made up of reified
knowledge (see the discussion in section 2). This makes collections of OMDoc
documents into referentially closed systems (all the knowledge referred to can
be expressed in the system itself), which in turn allows ontological bootstrapping
(the ontologies needed to draw inferences can be built up as we build up the
data). Note that only part of the mathematical knowledge embedded in math-
ematical documents can be exploited for ontological reasoning6, as it cannot
faithfully be expressed in first-order logic (much less so in description logics).
Consider for instance the following fragment from a math book:

Definition: f ∈ C0(R, R) , iff for all x, y ∈ R and ε > 0, there is a δ > 0, such

that |f(x)− f(y)| < ε if |x − y| < δ.

Definition: f ∈ C0(R, R) , iff for all x ∈ R and ε > 0, there are f ′(x) and

δ > 0, such
˛
˛
˛
|f(x)−f(x+h)|

h
− f ′(x)

˛
˛
˛ < ε for h < δ.

Examples: If f(x):= |x| and g(x):= 3x2 + 2x − π, then f ∈ C0(R, R) and

g ∈ C1(R, R) , but f /∈ C1(R, R) .

Theorem: C1(R, R) ⊆ C0(R, R)

Proof: Let f ∈ C0(R, R), x ∈ R and δ = ε > 0, then |f(x)−f(y)| ≤ h·|f(x)|. . .

Here, only the boxed fragments contain taxonomic information. Its justifications
via ε/δ arguments cannot be (simultaneously) be expressed in description logics.
Thus any web ontology that deals with objects such as the ones above will
necessarily have to approximate the underlying mathematical knowledge.

Generally in science, knowledge comes in documents and constitutes the con-
text, whereas description logic ontologies only reference and approximate the
knowledge in a document. Therefore, with OMDoc we propose an alternative
vision for a ‘semantic web for science and technology’ where the ontologies neces-
sary for drawing inferences are views derived from normative documents. Where
ontological fragments cannot be derived automatically (an interesting research
problem in itself), they can be embedded into OMDoc-encoded documents as
OWL, and later simply extracted. Thus OMDoc — as an document format
with embedded taxonomic information — serves as its own ontology language.

3.3 Opportunities of MKM for Semantic Wikis

The enhancements of the data model semantic wikis bring along — compared
to traditional wikis — are already present in the OMDoc format, so that an
OMDoc-based wiki only needs to operationalize their underlying meaning. For

6 For the sake of this argument we will use the term web ontology language synony-
mously with “description logic”, as in OWL-DL; if we pass to more expressive logics
like KIF, we lose decidability and thus the raison d’être for web ontologies.

192

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

example, typed links, which are implemented via an extension to the wiki syn-
tax in Semantic MediaWiki [VKVH06] or editable through a separate editor in
IkeWiki [Sch06], are implemented by means of the for attribute to OMDoc’s
elements (e.g. <example for="#id-of-assertion">). It remains left to the wiki
to make them editable easily and to visualize them adequately.

More than a general semantic wiki, one targeted at mathematics must ensure
that dependencies between concepts are preserved (see section 4.3). Results in
this area will be interesting for non-mathematical semantic wikis as well, espe-
cially when they support higher levels of formalization such as ontologies.

4 Design of the OMDoc Wiki

Before we can go into the design of the OMDoc wiki system and the user inter-
action — including Web-2.0-like added-value services, we will concern ourselves
with its information model: what a wiki page should comprise, what semantic in-
formation can be inferred from the OMDoc documents and the user interaction
logs, and finally how this can be utilized.

4.1 What Should a Page Contain?

The smallest unit in a wiki that can be displayed, edited, linked to, or archived
is a page. While in a non-semantic wiki, one page can have arbitrary contents,
in a semantic wiki it usually describes one concept , including its properties and
its relations to other concepts.

OMDoc groups closely related concepts into ‘theories’ and advises to follow
a ‘little theories approach’ [FGT92], where theories introduce as few new con-
cepts as possible7. We follow this intuition and restrict the pages of the OMDoc
wiki to single (little) theories to keep them manageable. Moreover, OMDoc dis-
tinguishes the knowledge elements in theories into constitutive ones like symbols,
definitions, and axioms (these are indispensable for the meaning of the theory)
and non-constitutive ones, such as assertions, their proofs, alternative definitions
of concepts already defined, and examples. We insist that the latter are rolled out
into separate theories (and therefore wiki pages). Small pages also improve the
effectivity of wiki usage, as they facilitate re-use by linking and allow for a bet-
ter overview through lists of recent changes and other automatically generated
index pages.

Each theory page has an associated discussion page, which provides an ade-
quate space for questions, answers, and discussions about this theory. OMDoc
will be used for discussion pages as well, with some proposed extensions for dis-
cussion posts: New elements for questions, explanations, opinions, etc. will be
added.
7 A theory may introduce more than one concept, if they are interdependent, e.g. to

introduce the natural numbers via the Peano Axioms, we need to introduce the set
of natural numbers, the number zero and the successor function at the same time.

193

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

4.2 Utilizable Semantic Information

From the OMDoc wiki we can gain several kinds of semantic information, for-
mally expressed as relations between concepts: First, there are basic relations
provided by the individual theories. Then, there are basic relations given by the
user interaction logs. Further, inferable relations can be defined as closures of
the former and as unions of theory relations and interaction relations. Finally,
there are other useful relations that the authors have to provide by manual an-
notations. All these definitions of relations are part of the system ontology8 of
the wiki, which will not be editable by the user.

Relations Provided by the OMDoc Theories Theories are related by the-
ory imports (see section 2, “Theory Level”) and by relations between their state-
ments (“Statement Level”). For example, if theory t states an assertion using
symbols defined in the theories t′ and t′′ or proves an assertion made in t′ using
a theorem from t′′ as a premise, t is related to t′ and t′′, but the individual
statements are also related to each other in a more fine-grained view.

Semantic information will only be extracted from the theory and statement
levels of OMDoc — directly or through reasoning in the case of transitive clo-
sures —, not from the object level9. The most important relation our application
utilizes is the dependency relation between theories, defined by theory import
declarations, and the acyclic graph formed by this relation.

Relations Given by User Interaction The basic relation given by user inter-
action is, “Who edited which theory page when?”. This information is available
for free in a wiki; it can be logged when a page is saved. Accordingly, a relation
could be defined which states that a user read a theory. This is, however, hard
to determine because of HTTP caching. Further relations are defined by user
feedback to navigation choices proposed by the wiki (see section 4.3).

Inferable Relations Further relations can be inferred from those introduced so
far, for example a metric estimating the degree of difficulty of a page, calculated
by counting the questions on the discussion page. From the user interaction log,
sets of related pages can be identified, which are not already related through
dependency. For this purpose, a notion of transaction must be introduced, i.e.
edits carried out by the same user in short succession. Similarly to products
bought in online shops, two theories are considered “related” when many users
edited them in the same transactions.

Even more sophisticated relations can be inferred from both OMDoc and
interaction relations. The software could, for example, track how many examples

8 not to be confused with the domain ontology (for mathematics) embedded in the
OMDoc theories.

9 The latter would be suitable for a future integration of computer algebra systems or
automated theorem provers.

194

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

to a theory users read and improve the difficulty estimation by including those
statistics.

4.3 User Interface and Interaction Model

Rendering Theory pages are presented to the user in a human-readable form
(XHTML plus presentation MathML) generated by a style sheet. The XHTML
contains inline hyperlinks to other theories where appropriate, for instance, from
an example to the concept or assertion it explains. As OMDoc documents, how-
ever, need not contain any human-readable sections or comments — after all,
the knowledge base might be used to support a theorem prover, not to create a
textbook! — there is also a source code view with with lines indented, keywords
highlighted and URIs displayed as hyperlinks. An intermediate view mode ren-
ders mathematical objects in the source code as formulae using MathML or
TEX-generated images.

Dynamic Navigation Links Navigation bars with fixed links, such as links
to global special pages like the recent changes list, as well as dynamic links
to theories depending on the theory t being displayed or related otherwise
are provided. Links anchored to particular statements are rendered inline, but
links anchored to whole theories — as,
for example, imports — must be dis-
played on a navigation bar. If mor-
phisms from the imported theory to
the importing theory are used, as is
the case with the import from monoid
to ring, which is used to define that
a ring is a monoid w.r.t. multiplica-
tion10, they are also displayed on re-
quest. The triangle next to the link to
monoid in the figure points out that
a morphism has been specified.

Dynamic navigation links improve usability by answering the questions “Where
am I?” and “Where can I go?” [Nie99]. If dynamic linking directly depends on the
page contents editable by the user, as is the case with theory dependency, users
are instantaneously gratified for contributing to the structure of dependency by
creating connections between theories [Aum05, sec. 3.2].

Navigating the Dependency Graph Not only will the user be able to nav-
igate along the dependency graph, she will also be able to interact with the
system: she will be asked whether she wants to explore the theories required as
dependencies in further detail.

10 This morphism basically maps the monoid’s ◦ operator to the ring’s multiplication
operator · and renames the identity element from e to 1.

195

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

a

b c

d

Suppose that the user is currently reading theory a, which
depends on b and c, which in turn depend on theory d11. In this
case the wiki will not only display navigation links to the direct
dependencies b and c, but it will also provide unobtrusive buttons
that allow the user to give one of the following acknowledgments:

No, thanks! “I already know b and c, please let me just read about a.”
Explain “Please show me b and c so that I can learn about a’s prerequisites.”

— b and c will be displayed.
Explore “Please show me all prerequisites for a.” — In our example, these are

b, c, and d, which could be opened in separate windows or serialized into one
page.

Suspend “I want to know about b and c, but only later.” — The system keeps a
notice in the user’s profile that she wants to read b and c sometime. Reminder
links to suspended theories are shown on a separate navigation bar.

Not only the last case will be recorded — the others are
interesting as well for the purpose of social bookmarking. For
example, if many users requested a theory t to be explained,
the system could default to display not only the direct depen-
dencies but also the level-two dependencies, for it seems that
t is too difficult for only being explained shallowly.

Furthermore, the system does not only keep track of which
theories the user wants to be explained, but also which the-
ories the user has already learned. For each theory, a button
will be offered for telling the system “I have learned this”.
Links to theories learned can then be disabled or displayed in
a more unobtrusive color than links to theories that are new
to the user.

Preserving Dependencies on Editing So far, there has not been any ap-
proach to preserving dependencies between pages in a semantic wiki. Tracking
dependencies and reasoning about them is an integral part of mathematical
practice. Known results are often generalized to find the “real” dependencies,
mathematical theories and books are rewritten to make dependencies minimal.
Therefore this problem cannot be neglected in a mathematical wiki. In the spe-
cial case of OMDoc, where dependencies need not be formally verifiable when
they have sufficient structural properties (see section 2), a dependency could for-
mally be broken but seem intact to the system anyway. Therefore, we propose
a first, simple approach to this problem; a more sophisticated “management of
change” process could be integrated later on the basis of work in formal meth-
ods [Hut04,AHMS02].

If a theory t depends on a theory t′, which can be edited independently from
t, modifying t′ could break t because some definition in t′ required by t might

11 See [Koh06, fig. 6.1] for a real-world example of such a diamond graph.

196

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

have been changed fundamentally12. The OMDoc wiki keeps the knowledge
base consistent by making hyperlinks not to theories in general, but to certain
versions of them. When an author enters a link to group-theory, for example,
this reference will be stored as group-theory/latest. On the other hand, the
author of t depending on t′ should be notified about updates to t′ so that he can
benefit from improvements made there. Such notifications can appear statically
on the author’s watch list13, but also dynamically in an area near the editing
box, while t is being edited. The author then can decide whether to adjust his
references from t’/old to t’/improved — depending on whether t′ has really
been improved (e.g. with corrections or additional documentation) rather than
changed in a dependency-breaking way. The other way round, a user editing t′

will be notified that there is a theory t depending on the one he is editing and
can decide whether to upgrade t’s references to t′ or to leave it.

User-friendly Editing The sim-
plest user interface for editing a wiki
page is a text area showing the whole
contents of the page. As editing OM-
Doc theories this way is tedious, our
wiki will provide alternatives.

The Ajax-based Edit-in-place in-
terface from Rhaptos (the software
run by Connexions [CNX06,The06b],
a community-driven collection of open
educational content) will be tai-
lored to editing OMDoc. Edit-in-
place [The06a] can insert or edit sev-
eral types of page sections: para-
graphs, equations, lists, and more.
All sections are displayed in a near-
WYSIWYG view, but clicking one of them replaces its view by a text area
containing its XML source. Three buttons are displayed below the text area:
“Cancel”, “Save”, and “Delete”, the latter two of which commit the editing
transaction by sending an asynchronous request to the server.

While Edit-in-place facilitates editing OMDoc on theory and statement
level, it is not helpful on the object level because. . .

1. Mathematical formulae are deeply nested in most cases, while “Edit in place”
has been designed with flat XML structures in mind.

2. There are shorter and more intuitive notations for formulae than OpenMath
or Content MathML.

Therefore the OMDoc wiki allows for entering mathematical objects in the
simpler syntax of QMath [Pal06], a batch processor that transforms plain text
12 It would be good style to copy t′ to a new theory with a different name, anyway.
13 Watch lists are, for example, known from MediaWiki

197

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

to OMDoc. QMath uses tables mapping text symbols to their OMDoc or
OpenMath representation; these tables are also made editable in the wiki. The
wiki will keep mathematical objects entered in QMath in this format for usability
reasons, only converting them to OMDoc when pages are exported to another
application.

The same way as QMath facilitates the creation of mathematical formu-
lae, wiki text syntax will be offered as a simple way to enter OMDoc’s rich
text [Koh06, sec. 14.5].

5 Implementation Notes

The OMDoc wiki presented in this paper is currently in a prototype stage under
active development. Once completed, it will be released under an open source
license; for earlier versions, please contact the authors. We have based our system
on IkeWiki14 system as a development platform because of its

Modular Design of Backend and GUI: There are separate stores for page
contents and the knowledge base. After the XML-encoded contents of a
page have been read from the database, small modules — so-called “wiklets”
— perform tasks like enriching the DOM tree of the page with navigation
side bars created from semantic annotations, and then the enriched page is
rendered for presentation using customizable XSLT style sheets.

Rich Semantic Web Infrastructure: IkeWiki supports many standards of
the Semantic Web. The knowledge base is stored as RDF; OWL-RDFS rea-
soning and SPARQL queries are supported.

User Assistance for Annotation: Editors for page metadata and link types,
which can likely be utilized for editing OMDoc, are available.

Orientation Towards Learning: One objective in IkeWiki’s ongoing devel-
opment is its expansion towards a learning environment [SBB+06]. Upcom-
ing versions will likely qualify as a base for an OMDoc wiki with learning
features (see section 4.3).

Some parts of the OMDoc wiki will, however, be very different from IkeWiki’s
operating principles and hence require substantial amounts of refactoring and
rewriting — for example:

– The presentation view of a page, for example, cannot be generated by a
single-pass XSL transformation from OMDoc to XHTML+MathML; in-
stead, the multi-level OMDoc presentation workflow [Koh06, sec. 25] has
to be adopted.

– The semantic relations between OMDoc theories are not exclusively stored
in the RDF knowledge base, as is the case with semantic relations between
IkeWiki pages; instead, the OMDoc wiki has to keep the annotations in
OMDoc synchronized with the knowledge base, which will still be used for
reasoning.

14 http://ikewiki.salzburgresearch.at, see also [Sch06]

198

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

6 Conclusion and Outlook

Mission . . . The upcoming release of the OMDoc wiki presented in this paper
will offer a user friendly editor for OMDoc’s XML source code (section 4.3).
Pages are viewable as XHTML+MathML as well as hyperlinked source code
(4.3). Semantic relations, to be displayed on a navigation bar, will be inferred
from the dependency relation between theories (4.3). Learning will be supported
through interactive navigation along the dependency graph (4.3). There will be
a simple assistance helping users preserve dependencies (4.3).

Later we will improve display of semantic relations, also taking into ac-
count the more fine-grained relations inferable from OMDoc’s statement level
(4.2) and from user interaction alone (4.2). Once techniques for management of
changes to OMDoc documents have been developed, they will be integrated
into the wiki to offer a more sophisticated dependency preservation.

. . . and Vision With the OMDoc wiki we pursue an alternative vision of a
‘Semantic Web’. Like Tim Berners-Lee’s vision we aim to make the web (here
mathematical knowledge) machine-understandable instead of merely machine-
readable. However, instead of a top-down metadata-driven approach, which tries
to approximate the content of documents by linking them to web ontologies
(expressed in terminological logics), we explore a bottom-up approach and focus
on making explicit the intrinsic structure of the underlying scientific knowledge.
A connection of documents to web ontologies is still possible, but a secondary
effect: In OMDoc we can have explicit taxonomic relations as in “all rings
are groups” — where the taxonomy is given by definition — or even implicit
ones as in “all differentiable functions are continuous” — where the taxonomy
is expressed by a theorem. If these theorems and definitions are of a suitable
form, or explicitly indicated to be taxonomic by the author, we can harvest this
information and transform it into a web ontology format such as OWL [W3C04]
and make it available to the Semantic Web.

References

[ABC+03] Ron Ausbrooks, Stephen Buswell, David Carlisle, Stphane Dalmas, Stan
Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion, Michael
Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith, Neil Soiffer, Robert
Sutor, and Stephen Watt. Mathematical Markup Language (MathML) ver-
sion 2.0 (second edition). W3C recommendation, World Wide Web Consor-
tium, 2003. Available at http://www.w3.org/TR/MathML2.

[AHMS02] Serge Autexier, Dieter Hutter, Till Mossakowski, and Axel Schairer. The
development graph manager MAYA (system description). In Hélène Kirch-
ner and Christophe Ringeissen, editors, Algebraic Methodology and Software
Technology — 9th International Conference AMAST 2002, number 2422 in
LNCS, pages 495–500. Springer Verlag, 2002.

[Aum05] David Aumüller. SHAWN: Structure Helps a Wiki Navigate. In W. Müller
and R. Schenkel, editors, Proceedings of the BTW-Workshop “WebDB Meets
IR”, March 2005.

199

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

[BCC+04] Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. De-
war, Marc Gaetano, and Michael Kohlhase. The Open Math stan-
dard, version 2.0. Technical report, The Open Math Society, 2004.
http://www.openmath.org/standard/om20.

[CNX06] Connexions. Project home page at http://cnx.org, seen March 2006.
[FGT92] William Farmer, Josuah Guttman, and Xavier Thayer. Little theories. In

D. Kapur, editor, Proceedings of the 11th Conference on Automated Deduc-
tion, volume 607 of LNCS, pages 467–581, Saratoga Spings, NY, USA, 1992.
Springer Verlag.

[Gea92] M. Genesereth and R. Fikes et al. Knowledge interchange format: Version 3.0
reference manual. Technical report, Computer Science Department, Stanford
University, 1992.

[Hut04] Dieter Hutter. Towards a generic management of change. In Christoph
Benzmüller and Wolfgang Windsteiger, editors, Computer-Supported Math-
ematical Theory Development, number 04-14 in RISC Report Series, pages 7–
18. RISC Institute, University of Linz, 2004. Proceedings of the first “Work-
shop on Computer-Supported Mathematical Theory Development” held in
the frame of IJCAR’04 in Cork, Ireland, July 5, 2004. ISBN 3-902276-
04-5. Available at http://www.risc.uni-linz.ac.at/about/conferences/IJCAR-
WS7/.

[KK04] Andrea Kohlhase and Michael Kohlhase. CPoint: Dissolving the author’s
dilemma. In Andrea Asperti, editor, Mathematical Knowledge Management,
MKM’04, number 3119 in LNAI, pages 175–189. Springer Verlag, 2004.

[Koh06] Michael Kohlhase. OMDoc An open markup format for mathematical docu-
ments (Version 1.2). LNAI. Springer Verlag, 2006. to appear, manuscript at
http://www.mathweb.org/omdoc/pubs/omdoc1.2.pdf.

[Kro03] Aaron Krowne. An architecture for collaborative math and science digital
libraries. Master’s thesis, Virginia Tech, 2003.

[LS99] Ora Lassila and Ralph R. Swick. Resource description framework (RDF)
model and syntax specification. W3C recommendation, World Wide Web
Consortium (W3C), 1999. http://www.w3.org/TR/1999/REC-rdf-syntax.

[MS04] E. Melis and J. Siekmann. Activemath: An intelligent tutoring system for
mathematics. volume 3070, pages 91–101. Springer-Verlag, 2004.

[Nie99] Jakob Nielsen. Designing Web Usability : The Practice of Simplicity. New
Riders Press, 1999.

[Pal06] Alberto González Palomo. QMath: A human-oriented language and batch
formatter for OMDoc. In OMDoc An open markup format for mathematical
documents (Version 1.2) [Koh06], chapter 27.2. to appear, manuscript at
http://www.mathweb.org/omdoc/pubs/omdoc1.2.pdf.

[SBB+06] Sebastian Schaffert, Diana Bischof, Tobias Bürger, Andreas Gruber,
Wolf Hilzensauer, and Sandra Schaffert. Learning with semantic wikis.
http://www.wastl.net/download/paper/Schaffert06 SemWikiLearning.pdf,
2006.

[Sch06] Sebastian Schaffert. IkeWiki: A semantic wiki for collaborative knowledge
management. Technical report, Salzburg Research Forschungsgesellschaft,
2006.

[The06a] The Connexions Team. Connexions: Help on editing modules.
http://cnx.org/help/EditingModules, 2006.

[The06b] The Connexions Team. Connexions: Sharing knowledge and building com-
munities. http://cnx.org/aboutus/publications/ConnexionsWhitePaper.pdf,
2006.

200

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

[VKVH06] Max Völkel, Markus Krötzsch, Denny Vrandečić, and Heiko Haller. Seman-
tic Wikipedia. In Proceedings of the 15th international conference on World
Wide Web, WWW 2006, Edinburgh, Scotland, May 23-26, 2006, May 2006.

[W3C04] OWL web ontology language overview. W3C Recommendation, World Wide
Web Consortium, February 2004.

201

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Towards a Semantic Wiki-Based Japanese
Biodictionary

Hendry Muljadi, Hideaki Takeda, Shoko Kawamoto, Satoshi Kobayashi,
and Asao Fujiyama

National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan
{hendry, takeda, skawamot, satoshi-k, afujiyam}@nii.ac.jp

http://www.nii.ac.jp

Abstract. This paper describes an on-going project to develop and maintain a
web-based Japanese Biodictionary within a Semantic Wiki environment. For
the development of the dictionary, MediaWiki is extended to enable the writing
of labeled links that represent RDF triples. The extension enables Semantic
Wiki to provide not only collaborative environment for experts in various biol-
ogy fields to create and edit the dictionary, but also the navigation support to
manage relations between terms. Using a simple wiki syntax, people can de-
velop and maintain the dictionary visually and easily.

1 Introduction

Developing a web-based Japanese Biodictionary is obviously a hard and time-
consuming task. The project for the development of a web-based Japanese Biodic-
tionary has done a survey over 77 Japanese textbooks in various biology fields, which
include textbooks for high-school, undergraduate and graduate students. There are
more than 30,000 different terms extracted for the web-based dictionary. However,
writing the description of each term is another thing to do. It will cost a lot of money
to pay for the copyright if we use the description written on the textbooks or other
dictionaries. On the other hand, as the web-based Japanese Biodictionary is also tar-
geting high-school students as its viewers, it is necessary to provide an easy-to-
understand description of the terms as well as the relations between terms [1].

Learning from the development of Wikipedia1, we consider that collaboration on
the web is perhaps the best solution for the development of the dictionary. By allow-
ing experts in various fields of biology to collaborate, the dictionary may well be
developed. However, as we implemented the MediaWiki2 in its original form, we
found that users cannot describe the relation between terms flexibly. Allowing the
MediaWiki to write labeled links can solve this problem.

This paper presents the development of a Semantic Wiki-based Japanese Biodic-
tionary. Section 2 presents the features of the proposed Semantic Wiki, which is

1 http://en.wikipedia.org/wiki/Wikipedia
2 http://www.mediawiki.org

202

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

called MewKISS. Section 3 presents the current state of the Semantic Wiki-based
Japanese Biodictionary. The conclusion of this paper is presented in section 4.

2 Semantic Wiki

2.1 Extending MediaWIki

MediaWiki is a very useful tool for collaborative content management. MediaWiki
also has a category management function which allows users to create class and sub-
class relation between Wiki pages under the namespace (“Category”), and class and
instance relation between Wiki pages under the namespace (“Category”) and com-
mon Wiki pages. However, MediaWiki in its original form does not allow users to
create relation between pages flexibly. Our research has enabled MediaWiki to write
labeled links [2]. Wiki syntax to write the labeled link is [[term:target_page|property]].
The labeled link relations will be displayed on the Wiki pages as follows.
1. On the source_page: -> property -> target_page
2. On the target_page: <- property <- source_page
3. On the property: source_page -> target_page

Fig.1 shows an example of the writing of labeled link on a Wiki page. Fig.2 shows
how the labeled link relations will be displayed on the Wiki pages.

Fig. 1. Writing the labeled links on a Wiki page

(a) on a source_page (b) on a target_page (c) on a property page

Fig. 2. Displaying the labeled link relations on Wiki pages

2.2 Features of the Proposed MewKISS

MewKISS is an abbreviation for MediaWiki with Simple Semantics. The word
“KISS” is written with full capital letters to stress that the proposed Semantic Wiki is

203

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

developed by considering the idea of the KISS principle3. MewKISS emphasizes the
user-friendliness of the Semantic Wiki engine. It is developed to allow non-technical
users to write and edit metadata according to RDF statements easily, and leaves the
more technical aspects to external applications.

Fig. 3 shows the overall structure of the MewKISS4. The features of the MewKISS
can be summarized as follows.

1. A collaborative lightweight metadata management. Enabling MediaWiki to write
labeled links with simple syntax allows users to create and manage relations be-
tween Wiki pages easily and flexibly. The writing of labeled links allows users to
write and edit RDF triples even though the users have no knowledge about it.

2. Navigation support. Displaying labeled links allows users to navigate the relation
between Wiki pages visually.

3. Mapping to other Semantic Web application. MewKISS handles only simple
RDF statements. By converting the RDF triples, which are stored in the new ta-
ble of MewKISS, into XML-encoded RDF data format, the RDF triples can be
exported to RDF database such as Sesame5.

4. An integrated content and metadata management. By extending MediaWiki, the
Semantic Wiki has the benefit of having all the functions available in MediaWiki
as a collaborative content management system. Thus, the Semantic Wiki can be
used as a collaborative and integrated content and metadata management system.

Fig. 3. Overall structure of the proposed Semantic Wiki

3 http://en.wikipedia.org/wiki/KISS_principle
4 Our current prototype is accessible from http://semanticwiki.jp/
5 http://openrdf.org/

 RDF DB

Web Server (Apache 2)
RDF

Export
RDF

Import

labeled link
process

Wiki Engine
(MediaWiki 1.5.x)

MewKISS

MySQL

Table for triples

Other
Semantic Web
Applications

Triples are stored in
the MewKISS database

204

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3 Semantic Wiki-Based Japanese Biodictionary

3.1 Current State of the Semantic Wiki-Based Japanese Biodictionary

Currently the prototype system contains more than 4,000 terms. There are 5 RDF
properties used in the biodictionary: is-a, part-of, synonym, English and English
synonym. The first two properties, is-a and part-of, are used to represent class and
sub-class relations. Synonym is used to link a Japanese biology term with its syno-
nym Japanese term. English is used to link a term with its direct translation’s English
term, while English synonym is used to link a term with its English term’s synonym.
Using our proposed Semantic Wiki, other properties, such as kind-of, may also be
easily used.

Category management function is also used for categorization and also to list all
the terms in the dictionary.

Fig. 4(a) shows a category page that is used to list all the terms in the biodictionary.
Fig. 4(b) shows the editing page of a term. Fig.4(c) shows the Wiki page of a term.

(a) A category page to list all the created
 biology terms

 (c) Wiki page of a biology term

(b) Editing page of the Wiki page

Fig. 4. Wiki pages in the Japanese Biodictionary

writing RDF triples

using category
management

function to list all
the terms in one

page

a biology
term

description

categorization

205

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3.2 Future Works

The current Semantic Wiki-based Japanese Biodictionary allows users to collabo-
rately create and edit biology terms as well as their relations to other terms. By con-
verting the stored RDF triples into XML-encoded RDF data format, RDF triples can
be exported to Sesame. However, further work needs to be done to enable users to
export the RDF triples to Sesame directly from the MewKISS environment. Further
works also need to be done to allow simple and complex queries directly from the
MewKISS environment, and on how the semantic mapping to other Semantic Web
applications may benefit the biodictionary.

4 Conclusion

For the development of a Semantic Wiki-based Japanese Biodictionary, MediaWiki is
extended to enable the writing of labeled links that represent RDF triples. MewKISS
provides a collaborative, easy-to-use and integrated content and metadata manage-
ment system. In the MewKISS environment, users can write and edit RDF triples,
even though they have no knowledge about it. RDF triples stored in the table of
MewKISS can be converted into XML-encoded RDF data format and exported to
RDF database such as Sesame. Thus, MewKISS may well serve as a bridge between
non-technical users and Semantic Web technology.

Developing the Japanese Biodictionary within a Semantic Wiki environment does
allow experts in various biology fields to create and manage content of the dictionary
as well as the relation between terms easily and visually.

References

1. Kobayashi, S., Kawamoto, S., Mizuta, Y., Demiya, M.S., Muljadi, H., Suzuki, S., Abe, T.,
Araki, J., Shirai, Y., Ito, T., Kondo, T., Kitamoto, A., Miyazaki, S., Gojobori, T., Sugawara,
H., Takeda, H., Fujiyama, A.: The New Generation Bioportal: the Development of a Web
Site for Biology Education. In Proc. of the 80th Domestic Conf. of the Society of Biological
Sciences Education of Japan (2006) 27 (in Japanese)

2. Muljadi, H., Takeda, H.: Semantic Wiki as an Integrated Content and Metadata Management
System. In Poster & Demonstration Proc. of the 4th Intl. Semantic Web Conf. (2005) PID
44

206

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Ylvi - Multimedia-izing the Semantic Wiki

Niko Popitsch1, Bernhard Schandl2, Arash Amiri1,
Stefan Leitich2, and Wolfgang Jochum2

1 Research Studio Digital Memory Engineering, Vienna, Austria??

{niko.popitsch,arash.amiri}@researchstudio.at
2 University of Vienna, Department of Distributed and Multimedia Systems
{bernhard.schandl,stefan.leitich,wolfgang.jochum}@univie.ac.at

Abstract. Semantic and semi-structured wiki implementations, which
extend traditional, purely string-based wikis by adding machine-process-
able metadata, suffer from a lack of support for media management.
Currently, it is difficult to maintain semantically rich metadata for both
wiki pages and associated media assets; media management functional-
ities are cumbersome or missing. With Ylvi, a semantic wiki based on
the METIS multimedia framework, we combine the advantages of struc-
tured, type-/attribute-based media management and the open, relatively
unstructured wiki approach. By representing wiki pages as METIS ob-
jects, we can apply sophisticated media management features to the wiki
domain and provide an extensible, multimedia-enabled semantic wiki.

1 Introduction

Wikis facilitate simple, efficient, collaborative document creation and evolution.
Based on our experience, we believe that wikis are a promising approach and will
spread out to new application fields, such as corporate intranets, collaborative
knowledge management systems, and e-learning scenarios. However, while tradi-
tional wikis (for example MediaWiki3 or MoinMoinWiki4) are unable to seman-
tically structure information, current developments in the field of semantically-
enabled wikis [5, 1, 3] suffer from unsatisfactory support for the management of
multimedia data, like videos, audio, or complex media presentations.

In this paper, we present Ylvi, a wiki implementation based on the METIS
media management framework[2]. Ylvi combines the collaborative properties
of traditional wiki systems with strong semantic features that characterize a
structured media management framework to implement typed articles, semantic
annotations, typed links, and advanced query processing.

2 Semantic Features in Ylvi

Ylvi makes extensive use of the METIS framework as its underlying media object
management layer. METIS is a middleware component for the rapid development
?? This work was supported by the Austrian Federal Ministry of Economics and Labour.
3 MediaWiki: http://www.mediawiki.org
4 MoinMoinWiki: http://moinmoin.wikiwikiweb.de/

207

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

of multimedia applications with a focus on metadata processing. Its data model
is comparable to RDF/RDF Schema and can be extended by complex data types
(dynamically loaded Java classes) that are essential for the development of ad-
vanced multimedia applications. Media objects can be typed, thereby inheriting
strongly typed attributes that can be used to describe the media. Semantic mod-
els (ontologies) can be defined using an available Protégé[4] interface. METIS
provides a plug-in framework for extending its core functionalities and seman-
tics, including plug-in media-locators, data types, functions and predicates as
well as sub-data models (so-called semantic packs, e.g. for meta data standards
like Dublin Core). A query engine can be used to search along multiple dimen-
sions (metadata values, semantic types, media features), and the Apache Lucene5

full-text engine was incorporated for indexing text-based content. METIS imple-
ments its own multi-channel publishing strategy—basically a complex pipeline
of XSLT transformations—for media aggregation.

Ylvi treats both wiki articles and multimedia objects in a uniform way: Both
are modeled as METIS media objects that can be typed and attributed and
may participate in directed, typed links. An overview of the semantic features
provided by Ylvi is depicted in Figure 1 and described in more detail below.

type hierarchy

multi-typing of
articles and media

attributed
media and

articles

media

INSTANCE

multiple
inheritance

MODEL

A
A

A

Internet

external
resources

link

A

typed links

article/media
embedding

article

Fig. 1. Features of the Ylvi Semantic Wiki

Type Hierarchy – Ylvi is able to use ontologies (e.g. formulated in OWL) for
the typing of articles and links. These can be imported by using the abovemen-
tioned Protégé interface.

Multi-Typing – In Ylvi, each article/media object can be an instance of an
arbitrary number of types that are defined in the ontology.
5 Apache Lucene: http://lucene.apache.org

208

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Attributed Media and Articles – Article types in Ylvi are associated with a set
of strongly typed attributes that can be defined using an expressive model (e.g.
cardinality restrictions, default values, derived attributes). Each article/media
object that is an instance of a type may define values for the respective types’
attributes (e.g. picture dimensions, e-mail address, document author).

Typed Links – Traditional wikis support simple, purely navigational, uni-
directional linking of wiki pages, and minimal inclusion of media objects (mostly
images) into wiki pages. Ylvi allows the definition of multi-typed links between
articles and media objects; consequently, Ylvi also supports the embedding of
media objects or other articles in Ylvi articles.

In contrast to other semantic wikis, Ylvi does not only relate articles as a
whole, but also retains the exact position of a link within the source code of an
article. Multiple links between the same article pair are not collapsed, but are
kept as multiple navigational and logical connections. This allows for example
the enrichment of query results with excerpts from the articles in the result set,
or ordering of result sets based on the links’ textual context.

Typed Links to External Resources – As Ylvi does not distinguish between
internal and external links, external resources (e.g. other wikis or web resources)
can be integrated by using the same syntax, and these links can be typed and
queried as well.

Sophisticated Synonym Handling – Traditional wikis use the page name as a
unique identifier within the scope of one wiki instance. In this case, the wiki must
rely on the manual definition of disambiguation pages6, which are not machine-
processable. Many semantic wikis, like IkeWiki[5], approach this problem by
using an URI as an article identifier. However, this imposes two drawbacks:
(1) in most cases, URIs are not intended for human consumption and are hard
to read and to remember, and (2) the wiki has no mechanism to automatically
detect ambiguous pages. In Ylvi, we use both a non-unique page name and an
internal, auto-generated, unchanging page number as identifier. Users may link
to a page using the page name (then, Ylvi automatically creates a disambiguation
page), or may eliminate the ambiguity and link to a page using its internal page
number.

Search – Ylvi implements a hybrid semantic search, enabling queries for
articles and media objects along multiple semantic dimensions (full-text, types,
attributes, links).

3 Enriching a Wiki User Interface with Semantic
Features

Markup – Wiki content is usually expressed in a simple markup language that is
easily adopted by non-technical users. Unfortunately, so far no standardized wiki

6 see e.g. http://en.wikipedia.org/wiki/Wikipedia:Disambiguation

209

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

markup language exists7. As it was our intention to develop an open and flex-
ible system, Ylvi does not implement a particular markup language but rather
provides the possibility to configure rendering pipelines consisting of plug-in com-
ponents that convert markup elements into rendering directives for the chosen
output channel (e.g. HTML or LATEX). The single exception to this is the markup
for link definition and semantic annotations. For the definition of (typed) links,
Ylvi uses a MediaWiki-like syntax; for typing and attribute intstantiation, two
new syntax elements are introduced (see Fig. 2).

~name=Ylvi~ is a friend of [friend_of[Wickie]]
and lives in her hometown
[born_in, lives_in[http://www.flake.nk|Flake]]
(depicted in {{Image:flake.gif}}). She is a
typical <<Viking>>

 Ylvi is a friend of Wickie
 and lives in her hometown

Flake (depicted in).
 She is a typical Viking.

Fig. 2. Ylvi syntax and rendering example

Semantic annotations of Ylvi articles are expressed by using the shown mark-
up elements (and some variations) – no special user interface is required for this.
This has several advantages:

– A single, coherent input paradigm is used for content and annotations.
– Semantic annotations are part of an article’s content and therefore benefit

from all functionality applicable to text-based content in a wiki (versioning,
diff, merging, quick copy/paste, . . .).

– Semantic annotations remain in the article’s source code even if the corre-
sponding model elements (e.g. types, attributes) are removed. This makes
sense as these annotations may still represent useful metadata of the article
and may be automatically reused if the corresponding elements are added
to the system again.

Rendering – To display an Ylvi article, its source code is passed through
the rendering pipeline. The plug-ins interpret the markup (including the seman-
tic annotations) of the article, transform it to a suitable output format (e.g.
HTML) and enrich it with additional information that is relevant to the user.

7 although there are already ongoing initiatives, see
http://tikiwiki.org/tiki-index.php?page=RFCWiki and
http://www.usemod.com/cgi-bin/mb.pl?WikiMarkupStandard

210

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

For instance, one may introduce a plugin that converts a designated markup of
GPS coordinates into a list of articles annotated with nearby coordinates.

Ontology Manipulation – As described above, we define wiki markup only
for semantic annotation, not for the definition and manipulation of semantic
concepts (i.e. ontology editing). We do this because ontology development is a
non-trivial problem and requires sophisticated user interfaces and tool support.
Although Ylvi provides simple online ontology editing features (e.g. adding a
new type to the ontology), we heavily rely on the available METIS extension
for Protégé, which allows the user to transfer Protégé models into METIS, and
makes the structures defined therein available for Ylvi.

4 Conclusion

In this paper, we have presented Ylvi, a semantic wiki that has extended func-
tionality for media management. We described how we have merged the tradi-
tional wiki approach of collaborative content creation, the extended functionali-
ties of semantic wikis (typed links, typed articles, attributes), and the power of
a sophisticated media management framework. We demonstrated how we allow
the user to integrate semantic markup directly into a wiki page and how we
can use these context-conserving annotations to improve search results. With
Ylvi, we have realized a wiki implementation that combines elaborate semantic
features with an open, extensible architecture.

In the future, we intend to extend Ylvi’s functionality by introducing user
management and more accurate markup-based annotation and querying fea-
tures, and we will extend Ylvi’s semantic features by allowing links to be at-
tributed, which supports the expression of more meaningful relations between
articles. We consider Ylvi as a suitable framework for the creation of semantic,
media-centric (intranet) applications and will continue to develop it into a solid
knowledge management and exchange platform.

References

1. D. Aumueller. Towards a semantic wiki experience - desktop integration and inter-
activity in WikSAR. In Proceedings of the ISWC 2005 Workshop on The Semantic
Desktop. Galway, Ireland, November 6 2005.

2. R. King, N. Popitsch, and G.-U. Westermann. METIS - A Flexible Database Foun-
dation for the Unified Management of Multimedia Content. In Proceedings of the
10th International Workshop on Multimedia Information Systems (MIS 2004), 2004.

3. M. Krötzsch, D. Vrandecic, and M. Völkel. Wikipedia and the semantic web - the
missing links. In Proceedings of Wikimania 2005. Wikimedia Foundation, July 2005.

4. N.F. Noy, M. Sintek, S. Decker, et al. Creating Semantic Web Contents with Protege-
2000. IEEE Intelligent Systems, 16(2), 2001.

5. S. Schaffert, A. Gruber, and R. Westenthaler. A Semantic Wiki for Collaborative
Knowledge Formation. Semantics 2005, Vienna, Austria, 2005.

211

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Automatic Deployment of Semantic Wikis: a Prototype

Angelo Di Iorio1, Marco Fabbri1, Valentina Presutti1, Fabio Vitali1

1 Department of Computer Science, University of Bologna, Italy
{diiorio, mfabbri, presutti,vitali}@cs.unibo.it

Abstract. Semantic wikis simplify the creation, searching and management of
content in a specific domain of interest. Although very powerful solutions exist
for adding semantics to wikis, the authoring process of domain-oriented con-
tent still remains a manual and quite consuming task. We propose a different
approach to deploy semantic wikis: the automatic delivery of a customized wiki
for a given domain, taking as input an ontological description of that domain.
WikiFactory is an application that takes these ideas to implementation, based
on a strong distinction between the ontology designer, the content author and
the graphic designer. Moreover WikiFactory is designed to be independent for a
specific wiki clone and commit an abstract description of pages onto a wide set
of wiki platforms. In this paper we present the early implementation of Wiki-
Factory that automatically generates pages for MediaWiki.

1. Introduction

Wikis[2] are increasingly gaining importance among the web authoring tools, either
as personal web sites, or as well-featured information systems supporting schools,
universities and firms[16]. Among wiki clones, a leading role is played by semantic
wikis, which combine the success of the wiki model, with the power of Semantic Web
technologies. A Semantic Wiki[17] is a wiki enhanced in order to encode more knowl-
edge than just structured text and hyperlinks, and to make that knowledge readable by
machines too. They make it easy to manage, search and retrieve information among
the wiki pages and entities. Several examples of semantic wikis can be cited:
RDFWiki[12] provides users with a simple text-based interface to edit content and
metadata and stores all data as RDF statements; SemanticMediaWiki[10] is an exten-
sion of MediaWiki (the wiki platform used by the WikiPedia community[18]) that
allows users to add metadata understandable by automatic processes too; Rhy-
zome[14] allows users to express RDF statements through a simplified syntax called
ZML, and many other projects were proposed by researchers in order to merge wikis
with semantic web technologies.

A different point of contact between these research efforts can be also figured out:
using semantic information in order to generate wikis, apart from annotating them. In
particular, we propose to generate content for a wiki, taking in input an ontological
description of the domain where that wiki will be used. Each domain, in fact, suggests
a natural structure of a related wiki, describing clusters of pages, navigation paths but
also templates for each page, or dynamic behaviors and so on. For instance, a wiki for

212

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

a university is supposed to have pages for courses, classes, professors, rooms, events,
exams, and so on; each page is expected to express some information organized ac-
cording to a given template. Moreover, a lot of repeated pages, repeated structures and
repeated templates can be found. What usually happens is that a university employee
writes the content of those pages one by one, filling them with the proper data,
through an error-prone and time-consuming process.

In [5] we describe WikiFactory, a framework designed for the automatic generation
of wikis from ontological descriptions. WikiFactory centres on an OWL description of
a domain, written by different users with different skills and processed by an engine
that translates such description into actual wiki pages. A first advantage of such ap-
proach is clear: it makes automatic, fast and easy the manual process described so far.
But another aspect is equally important: WikiFactory does not produce only wikis but
even a sort of semantic wikis. All pages are natively decorated with metadata, directly
derivable from the input ontology: relations among entities in the domain can be easily
mapped in relations among the wiki pages, as well as objects’ properties can be trans-
formed in metadata about those pages. The current implementation of the system does
not store metadata yet, but it will be simple to include them into the final wiki, moving
off the pool of semantic data behind the generation process.

More details about WikiFactory can be found in [5], where we discussed the ra-
tionale behind the system, the overall architecture and the goal of our model. In this
paper we present a very early prototype of WikiFactory and discuss how the abstract
model has been instantiated and implemented in a running application. The rest of the
paper is structured as follows: section 2 gives a brief overview of the WikiFactory
publishing model; section 3 illustrates how the current prototype works through a
simple case study; section 4 discusses the internal architecture of the system and the
conclusions depict possible evolutions of the overall project.

2. WikiFactory: a prototype for semantic wikis generation

WikiFactory prototype is a Java application aiming at demonstrating the feasibility
and the potential of the WikiFactory's model. Although WikiFactory is designed to
generate content for different wiki clones, the current prototype works on Me-
diaWiki[11] and generates pages for that specific clone only. It is a very first imple-
mentation of a more complex architecture, which cover many issues about domain-
oriented and reliable wikis.

The publishing model behind WikiFactory changes the classic wiki publishing ap-
proach since the creation of pages becomes an automatic effect of describing a do-
main, rather than a direct authoring process. The lifecycle of a common wiki is quite
simple and straightforward: an administrator sets up a wiki software and its dependen-
cies (as a web server or an external database), and later many users add content manu-
ally by creating and editing topics. Semantic wikis add a new dimension to this work-
flow, since users can also add metadata to the pages, during the editing phase.

The simplicity and speeding of such approach gave a great contribution to the in-
tensive and widespread diffusion of wikis among Internet communities, companies

213

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

and organizations. On the other hand, it is still limited in terms of automation, since
most of the authoring work still remains completely manual. Fig. 1 shows such a sim-
ple scenario:

Fig. 1. The wiki publishing model

WikiFactory adds an intermediate phase to this process in order to automate the

production of repeated pages and structures, by exploiting ontologies. Such improved
version of the wiki publishing model is depicted in fig. 2.

Fig. 2. The WikiFactory publishing model

The installation and editing steps do not change (although the automatic installation
of the wiki environment is a requirement – with no high priority - of WikiFactory),
while a new intermediary step shows users writing (or importing) an ontology and
WikiFactory populating the final wiki with content extracted from this ontology. The
core of the application is just the ontological description we name WikiFactory
(based) Ontology, that describes everything needed by the WikiFactory engine in
order to populate the final wiki.

��������

������ ��������

214

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Three main sub-components can be identified within such ontology:
• WikiFactory Basic: a core ontology supplying rules, constructs and objects

used by the designers to define the rest of the ontology. Note that it is differ-
ent from the whole assembled ontology, whose name is quite similar.

• Domain Description: a representation of the domain describing the entities
and relations of the domain, and the data to be filled in the wiki.

• Structure Description: the actual description of the domain-oriented wiki, a
model of topics’ structures and templates.

The assembled ontology indicates how to populate the final wiki, by inserting the
data provided by a domain-expert, and modelled by an ontology-expert. Two more
actors, in fact, exist in that scenario:

• a domain expert, we name Bianca, i.e., an inexperienced user who adds con-
tent and uses the final wiki every day for carrying out her tasks;

• an ontology expert, we name Andrea, who adapts the requirements of the
domain experts and actually produce the final ontology.

In order to explain the role played by these two experts and to discuss the structure
of the ontology with more details, as well as the internal functioning of the system, we
present a case study in the following section.

3. WikiFactory workflow: a simple case study

Consider a wiki used by a Computer Science Department of a University (CSD),
say the University of Bologna. Such a wiki (CSD wiki) is supposed to have pages
about professors, courses, classrooms, staff and so on. WikiFactory prototype is an
early application, not yet mature to produce the whole CSD wiki, but it already pro-
vides the most relevant constructs in a flexible and extensible framework.

In the rest of the section we describe how the WikiFactory prototype can be used to
produce a CSD wiki simply composed by a department home page linked to the list of
the affiliated professors and, for each of them, a home page with some information
and a list of courses he/she teaches. This example allows us to discuss two relevant
goal of the application: (i) describing and committing a set of pages linked each other
and (ii) describing and producing a single wiki page. As discussed in [5], the whole
design is completed by an automatic deployment of scripts that support dynamic be-
havior, but that feature is not still supported in the current prototype.

3.1. Setting up a wiki target platform

According to the above mentioned schema, the first step consists of a common in-
stallation of a wiki platform: a system administrator from the University's technical
staff receives a request for a wiki, say MediaWiki, to be installed on a department
machine. He installs all required components and a new installation of MediaWiki is
now available, with no content yet (apart from content already provided in the in-
staller). It has to be noticed that among the requirements of the WikiFactory platform

215

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

there is also the automatic configuration and installation of the desire environment, i.e.
the wiki clone. Nevertheless, such requirement now has less priority than others.

3.2. Describing a domain-oriented wiki

The second step of the process consists of producing the WikiFactory (based) On-
tology collecting all data required to populate the final wiki. As discussed before dif-
ferent actors are involved in creating different parts of such ontology (actually the
basic ontology is a built-in feature of WikiFactory).

3.2.1. What a domain expert does
Bianca is an employee of the Computer Science Department in charge of supplying

information about professors and courses of the department. Such information has to
be encoded in RDF statements saying that “a course named ‘Web Technologies’ exists
and it’s taught by Fabio Vitali” or “Fabio Vitali is a professor”, or “You can contact
Fabio Vitali by email at fabio@cs.unibo.it or by phone at 0512094872”.

Obviously we cannot expect that Bianca fills manually such RDF document, but we
need an automatic process that produces such document. Currently WikiFactory pro-
vides her a very simple interface shown in fig. 3. The study of the Graphical User
Interface (GUI) is a sensitive aspect, an important requirement of WikiFactory. Never-
theless, its definition has not been approached deeply and comprehensively yet be-
cause it depends on the definition of all functionalities WikiFactory is intended to
support.

Fig. 3. The WikiFactory Interface for Bianca

The relevant aspect is that Bianca perceives such task as a raw insertion of data, but
she is actually populating the ontology (i.e, completing the domain description). A
clarification is needed at this point: even such description could be further divided in
two sub-components, the generic description of a domain, and specific description of
an instance of that domain. Consider the CSD case study: a generic description says
that a computer science department has a set of professors and each of them can be
described by a set of personal information, including a list of courses he teaches; a

216

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

specific description says that the computer science of the University of Bologna has a
specific list of professors, including Fabio Vitali, that teaches “Web Technologies”
and can be reached by a specific email address or phone number.

One of main important activities we are planning for WikiFactory is just studying
the automatic production of the above mentioned interface, from a generic domain
description: the interface shown in fig. 3 has been created manually, but it could have
been automatically created from a pre-existing ontology about the university domain.

3.2.2. What an ontology expert does
Andrea is an ontology expert in charge of producing the Structure Description of

the CSD wiki. He works with specific tools such as Protégé[13] and actually writes
RDF statements listing the pages of the wiki, describing their connections with the
domain entities and their internal structure. Another requirement of WikiFactory is
interoperability with Protégé.

The main element provided by the WikiFactory Basic Ontology is called TreeOf-
Topic. A TreeOfTopic represents a set of wiki pages (or a single one) and, as ex-
pected, will be instantiated into corresponding page(s) in the final wiki. In turn, a
TreeOfTopic is composed by one or more optional Iterator(s) and a TopicTemplate.

The element Iterator is a very general purpose structure indicating a class of indi-
viduals within the domain description: it can be used to tell WikiFactory to generate a
page for every instance of that class, and to link that page to the current one. Andrea
creates an instance of TreeOfTopic named Professors, containing a Professor Iterator;
this Iterator has a specific property pointing to the instances of professors within the
domain description. At the end of the process, for each professor included in the list
filled by Bianca, a new link will be added to the Professors page.

The element TopicTemplate is used to declare the fragments composing a page.
The basic assumption is that a small set of components can be identified, able to cap-
ture the internal structure of any wiki page, regardless of the wiki platform or the
subject of the page. In [4] few patterns are identified able to express the content of any
web page too: (classified) paragraphs, headings, tables, records and few other things.
What Andrea does is simply describing which components are included in a given
page and which text each component is made of. At the end of the process, these ele-
ments will be re-flowed and formatted according to the layout of the final wiki. Actu-
ally, the current prototype of WikiFactory allows Andrea to specify only the title and
the whole body of a page, but we are working on more sophisticated templating lan-
guages and solutions.

A very simple rule is used within the WikiFactory prototype: each instance of a
word preceded by the character ‘$’ will be automatically replaced by the value of the
matching property defined in the Domain Description. Then, the following text frag-
ment “This is $resource_title personal home page. You can contact him/her by phone
calling $telephone_number or by sending an email to $email” will be filled with the
right data, calculated by the Iterator, and previously inserted by Bianca. Obviously,
such a simple templating language cannot be enough for all the real-world scenarios
(consider for instance multiple phone numbers or emails), so that we are investigating
more complex solutions: particularly interesting are some Java templating engines that
could be easily integrated in WikiFactory, such as FreeMarker[6] or Velocity [1].

217

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3.3. Instantiating a wiki

The final step of the process shows the WikiFactory engine translating the ontology
created by Bianca and Andrea into an actual wiki. According to the semantics of the
Iterators and Templating operators, the engine collects all data inserted by Bianca and
put them into wiki pages. Fig. 4 shows how the information about a professor are
presented in MediaWiki.

Fig. 4. A simple page on MediaWiki created by WikiFactory

4. A modular java application

The WikiFactory prototype is a java application composed by different modules
that work together in order to deploy content on MediaWiki, taking in input the Wiki-
Factory Ontology described so far. Fig 5 summarizes the architecture of the system:

Fig. 5. The architecture of WikiFactory Application

Two main components can be identified:
• the Ontology Analyzer: that parses the input ontology and collect data

about what and how is being published.

218

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

• the Wiki Writer: that commits the changes reported by the Ontology Ana-
lyzer on the target MediaWiki installation.

The Ontology Analyzer includes external libraries to handle OWL documents, in
particular the Jena Parser[8], a Java library developed by HP for the access and man-
agement of Semantic Web documents. While retrieving information, the analyzer
notifies them to the WikiWriter in order to actually produce pages. As expected, the
Wiki Writer exports method for: (i) creating wiki-pages according to a given structure
(that is, writing the body text indicated in the ontology) and (ii) iterating such creation
for all the elements pointed by the Iterator construct. At the end of the process, a
commit operation stores information on the wiki clone.

Actually the Wiki Writer is an abstract component, that is a Java interface imple-
mented by every specific wiki clone Writer. The WikiFactory MediaWiki Writer
exploits a MediaWiki extension that allows a batch creation of pages, by submitting a
text file to a PHP script by Jonathan Cutrer[3]. According to the output of the Ana-
lyzer such a file (which even collects many pages together) is written and sent to the
MediaWiki target installation through an HTTP connection.

Different solutions can be implemented by different writers, such as writing directly
on files, or posting data as a common page editing, or writing a DB or anything else:
users can deploy the same wiki from the same ontology on different platforms, since
the complexity is hidden within the system. Particularly interesting in this context are
the standard Wiki XML-RPC [9] APIs, a set of interfaces based on XML-RPC tech-
nologies that allow any client to interact with a wiki, regardless of its internal imple-
mentation. We plan to further investigate these libraries in order to standardize the
communication and to make WikiFactory completely independent from the target wiki
platform.

5. Conclusions

The WikiFactory prototype has shown how a simple wiki can be deployed, taking
in input an ontological description of its domain of interest. The system relies on a
strong distinction between the roles of the users: a domain-expert has to simply insert
data, without dealing with their actual formatting into a wiki page, while an ontology-
expert has to describe structures, without dealing with the data filling. Most of the
routine work is performed by the engine behind the scenes, so that the whole process
is simple and automatic.

The prototype presented in this paper is still very much in its initial phases, but we
plan many activities towards a complete maturation. First of all, we are working to
improve the WikiFactory Ontology and, subsequently, the OntologyAnalyzer: apart
from issues about parameterization, configuration and performances, we are working
on a more complex set of objects (including tables, records and other fragments) use-
ful to create complex pages, to support more wiki features and to handle dynamic
behaviour. As expected, we also plan to code new Wiki Writers, producing content for
many other wiki platforms e.g., TWiki[15] or many semantic wiki.

219

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Another important issue raised while working on the prototype is supporting modu-
lar deployment. We think that it is a prior and important requirement of WikiFactory
to allow users to deploy wiki modules. In fact, it is desirable to add new elements
(e.g., structures, templates, topics) to a domain-oriented wiki already deployed without
affecting the existing content.

Issues about the interface for non-expert users are being investigated too: ontolo-
gies could be also exploited to dynamically create user interfaces (such as web forms,
stand-alone applications or anything else), flexible and not hard-coded within the
system.

Finally, we plan to focus on a tricky issue never discussed so far: what does it hap-
pen on a wiki deployed by WikiFactory after its installation? The current prototype
does not face such problem yet, since the editing phase is completely disconnected
from the wiki deployment but a lot of interesting issues can be raised by studying the
consistency between the ontological view of a wiki and its actual pages, as well as the
techniques used to update both of these views. What we want to do is either propagat-
ing changes from the ontology into the wiki or, the opposite, updating the ontology
according to the modifications on wiki content. This is a very difficult task and we
haven’t yet found a good solution but we consider it the most important development
track of our research.

However, WikiFactory is a lively project, whose preliminary implementation has
been described in this paper. More detailed and up-to-date information can be found
in its wiki site, at the address http://swe.web.cs.unibo.it/WikiFactory/.

6. References

1. Apache Jakarta Project, “The Velocity Template Engine”,
http://jakarta.apache.org/velocity/.

2. Cunningham, W. & Leuf B.The Wiki way. New York: Addison-Wesley, 2001.
3. Cutrer J. “Mediawiki bulkpage Page Creator”,

http://meta.wikimedia.org/wiki/MediaWiki_Bulk_Page_Creator.
4. Di Iorio A., Gubellini D., Vitali F. "Design patterns for document substructures". In the

Proceedings of Extreme Markup Conference 2005, August 1-5, 2005, Montreal, Canada.
5. Di Iorio A., Presutti V., Vitali F. "WikiFactory: an ontology-based application to deploy

domain-oriented wikis". To appear in the Proceedings of the European Semantic Web
Conference 2006, June, 2006, Budva, Montenegro.

6. FreeMarker, “FreeMarker templating engine”, http://freemarker.sourceforge.net/index.html
7. Guzdial, M. Rick, J. and Kehoe, C.: “Beyond Adoption to Invention: Teacher-Created

Collaborative Activities in Higher Education”, Journal of the Learning Sciences, 2001,
Vol. 10, No. 3, 265-279.

8. HP Labs, “Jena – A Semantic Web Framework for Java”, http://jena.sourceforge.net/.
9. Jspwiki.org, WikiRPCInterface, http://www.jspwiki.org/Wiki.jsp?page=WikiRPCInterface
10. Krotzch Markus, Denny Vrandecic, and Max Volkel. “Wikipedia and the Semantic Web

The Missing Links”. In Proceedings of Wikimania 2005, Frankfurt, Germany, August
2005.

11. MediaWiki.org, “MediaWiki”, http://www.mediawiki.org/wiki/MediaWiki.
12. Palmer Sean B. “RDFwiki”. http://infomesh.net/2001/rdfwiki/.

220

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

13. Protégé, “The Protégé Ontology Editor and Knowledge Acquisition System”.
http://protege.stanford.edu.

14. Souzis A. “Rhizome position paper”. In Proceedings of the 1st Workshop on Friend of a
Friend, Social Networking and the Semantic Web, September 2004.

15. Thoeny P. TWiki: Enterprise Collaboration Platform. http://twiki.org.
16. Thoeny P., “TWiki Success Stories”, http://twiki.org/cgi-

bin/view/Main/TWikiSuccessStories.
17. Wikipedia.org, “Semantic Wikis”, http://en.wikipedia.org/wiki/Semantic_Wiki.
18. Wikipedia.org. Wikipedia Home Page. http://www.wikipedia.org.

221

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Bringing the “Wiki-Way” to the Semantic Web with

Rhizome

Adam Souzis1

1 Liminal Systems, 4104 24th Street Ste. 422,
San Francisco, CA, USA

asouzis@users.sourceforge.net
http://www.liminalzone.org

Abstract. The Wiki and the Semantic Web can be compared as two different
approaches to capturing knowledge, where the former trades away precise,
explicit, and internally consistent semantics for speed and simplicity. Any
attempt to bridge these two approaches has to either somehow reconcile these
trades-off or make compromises one way or the other. This paper describes
how Rhizome, an open source application framework for developing “Semantic
Wiki” applications, attempts to bridge these approaches. Rhizome includes a
text formatting language called ZML whose syntax is similar to text formatting
languages found in most Wikis but with enhancement to make it easy for users
to express explicit and arbitrary semantics. Rhizome relies on “shredding”, a
flexible framework for specifying rules for characterizing semi-structured
content with RDF and providing an ontology that can precisely describe the
relationship between the source content and the resulting statements.

1 Background

The Wiki and the Semantic Web can be compared as two different approaches to
capturing knowledge, where the former trades away precise, explicit, and internally
consistent semantics for speed and simplicity. Any attempt to bridge these two
approaches has to either somehow reconcile these trades-off or make compromises
one way or the other; for example, by adding complexity and constraints that
undermines Wiki design principles or by limiting the scope where Semantic Web data
can be applied (e.g., limiting it to meta-data associated with traditional wiki pages).
The Wiki has proven to be a remarkably successful tool capturing knowledge in a
collaborative, open fashion. The inventor of the Wiki, Ward Cunningham, has
identified several Wiki design principles, which he refers to as the “Wiki-way”[1]. A
review of his descriptions of some of these principles is suggestive of how they can
be challenging for applications that utilize and create Semantic Web data:
“Mundane – a small number of (irregular) text conventions will provide access to the
most useful page markup”[2] But this approach doesn't easily lend itself to making
precise and controlled statements; indeed Semantic Web scenarios generally assumes
a specialized user interface for a particular application domain.
 “Unified – Page names will be drawn from a flat space.”[2] This principle seems in
accord with the use of universally unique URIs as the basis of names for the Semantic

222

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

web; however, the scope of this namespace is so huge it is pragmatically difficult to
treat as a flat space.
“Tolerant – Interpretable (even if undesirable) behavior is preferred to errors.”[2] But
ontologies and ontologies languages generally require some degree of internal
consistency to function properly.
 “Open – any reader can edit [a page] as they see fit.”[2] However, when the content
being created is Semantic Web data which can be readily consumed by -- and alter the
behavior of – applications, security concerns must be addressed.
This paper attempts to conform to the ABCDE format for Semantic Conference
Proceedings[3]; the next section, “Contribution” describes how Rhizome[4], an open
source application framework that makes it easy to develop “Semantic Wiki”
applications, contributes to the challenges outlined above; this is followed by the
Discussion section which describes Rhizome's architecture in more depth.

2. Contribution

Rhizome is an open source application framework that makes it easy to develop
“Semantic Wiki” applications: applications that can create and utilize RDF data and
Semantic Web ontologies while letting users interact with and modify that data in a
Wiki-like fashion. In this section we describe how Rhizome attempts to fulfill the
Wiki design principles discussed above.

2.1 Mundane

What sort of “(irregular) text conventions” should be used for authoring RDF triples?
The simplest approach would be a text format limited to providing a way to explicitly
describe RDF triples. And arguably, existing plain text RDF formats such as N3 and
Turtles already fit this criteria. However, this approach limits its audience to those
with knowledge of RDF and domain-specific ontologies. And even for sufficiently
trained users, writing precise and atomic RDF statements flies in the face of the
Wiki’s goal of being “quick”.
A more ambitious approach would be to design a more traditional Wiki-like text
format whose structure could be easily represented as RDF. However there are several
challenges to creating a mapping to generic RDF or some general purpose ontology
for content. First, current Semantic Web standards, such as OWL, are not yet
powerful enough to inference equivalencies between a representation in a content
ontology and its appropriate domain-specific ontology. Second, the most intuitive
markup structure for a particular application doesn’t always submit to a
straightforward mapping to RDF. Finally, there’s the practical issue that representing
structural elements in free form text as RDF creates a tremendous volume of RDF
statements, especially if order is preserved.
Because of these limitations, Rhizome’s approach is to use a Wiki-like text format
(dubbed ZML) that is flexible enough to express arbitrary structure but doesn’t
specify a particular translation to RDF. Instead, the system determines which
translation rules to apply based on the content of the text.

223

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Unlike other Wiki text formats, all structural elements in ZML can be arbitrarily
nested (relying on whitespace much like the indentation rules found in the Python
programming language) and annotated with attributes. The result of parsing ZML is
an XML document and in fact ZML can used as a simple, concise alternative syntax
for XML. This design enables the user to easily use microformats[5] or domain-
specific XML vocabularies (for example, Rhizome supports vocabularies from the
Apache Forrest and Docbook projects). Another advantage is that this lets arbitrary
HTML or XML be converted to ZML, enabling round-trip conversions. For example,
users can write content in ZML, edit it in a WYSIWYG (X)HTML editor, or process
it with specialized tools that consume XML, and then view it as ZML again.
ZML also has syntactic constructions to make it easy to explicitly express semantic
distinctions that are elided in other Wiki text formats. For example, we must
distinguish between creating a reference to a WikiName (which, in our case,
corresponds to a RDF resource name) and creating a hyperlink, which has explicit
presentational intent and generally implies a relationship between the content and the
link target. Similarly, we must distinguish between anchors and their common use as
a way to name document sections.

Fig. 1. A screenshot of a page being edited in the Rhizome Wiki, with aspects of ZML syntax
highlighted.

ZML doesn't directly translate into RDF; instead it relies on “shredding”, the process
Rhizome uses to bridge implicit and explicit semantics. Shredding is a flexible
framework for specifying rules for characterizing semi-structured content with RDF
and providing an ontology that can precisely describe the relationship between the
source content and the resulting statements.
Rhizome lets users create rules that trigger shredding on the basis of the content's
type. For example, shredding an RDF/XML document would consist of parsing the
RDF; shredding an (X)HTML document could invoke invoking a GRDDL (Gleaning
Resource Descriptions from Dialects of Languages) [6] XSLT stylesheet; and
shredding an MP3 file would consist of extracting the metadata out of the embedded
ID3 tag. Using RxPath's support for RDF named graphs (see below), Rhizome can
retain the relationships between an instance of content and statements extracted from

224

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

it, enabling it to know, for example, that the statements might be out of date when
content has changed.
Rhizome also lets users directly view and edit raw RDF in ZML via RxML, an
alternative syntax to RDF with the goal of enabling novices to read and edit RDF
using a metaphor conceptually similar to and only incrementally more complicated
than application properties file formats such as Microsoft Windows' .ini files.
Although RxML can express any set of RDF statements, it presents the RDF in a
constrained, simplified manner: as a list of resource URIs, each of which has a set of
property name-value pairs.

2.2 Unified

Providing a unified namespace for users requires a strategy for mapping WikiNames
to RDF resource URIs. One simple approach would be to treat the WikiNames
themselves as a resource URI, e.g. by introducing a “wiki:” URL scheme. It is
obvious that given the decentralized nature of the Semantic Web this approach could
not scale without name conflicts arising. Alternatively, we could generate a unique
URL from a WikiName; for example by using the actual URL to the web page that
corresponds to the WikiName, or by pre-pending some application specific base URI.
However, this contradicts the principle of a unified namespace by essentially creating
separate namespaces -- users would not be able use to WikiNames to refer to
resources outside the system without some way to refer to those namespaces.
Thus Rhizome assumes that in order to provide a single, flat namespace of
WikiNames that is universally addressable we need to create a level of indirection
between a RDF resource URI and its WikiName, and accept that the determination of
this relationship is dependent on the context it appears in. WikiNames are treated as a
property of a resource, with only slightly stronger semantics than RDF Schema’s
“rdfs:label” property. When a WikiName is referenced in content, it is up to the
shredding process to assert a relation between it and a RDF resource. This is
appropriate because the question of how closely that name should be “bound” to an
RDF resource is dependent on the needs of the specific application and what
assumptions can be made about the context in which it appears.

2.3 Tolerant

The principle of tolerance is harder to achieve with Semantic Web data than the plain
text found in traditional Wikis because Semantic Web data is precise and machine
consumable and so very often requires some degree of validation. Rhizome allows an
application to maximize the tolerance allowable by providing partial, incremental and
ad-hoc of validation of RDF using Schematron. Thus validation can be accomplished
without having to use complex ontology languages such as OWL, which can often
break down in the face of inconsistency. Schematron[7] is a validation language that
uses XPath expressions as assertions about the validitity of a XML document. Using
RxPath (described below), Schematron can be used to validate a RDF model. The
benefits of using Schematron to validate XML also apply to validating RDF:

225

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Schematron allows complex, ad-hoc assertions to be expressed that can't easily be
expressed in other schema languages. For example, because OWL is based open
world model, it can't define constraints that apply against the entire model such as
uniqueness or default values. And compared to languages like OWL, Schematron is
easier to write and understand and requires much less specialized knowledge.

2.4 Open

Like tolerance, it is more difficult to achieve openness in Semantic Web applications
than with traditional Wikis. Rhizome attempts to balance openness with security by
providing an authorization scheme that is powerful yet unobtrusive (one that doesn't
impose an addition work where it is not needed). Rhizome lets the application define
authorization rules for the addition and removal of arbitrary RDF statements using the
notion of access tokens that guard resources. This conceptually simple model can be
used to build fairly complex authorization rules; for example, one that allows a guest
account to create a new user account for herself, but not modify or create other
accounts or objects. However, the RDF model can make it difficult to create these
rules because of the very fine-grained nature of RDF resources (for example, even
very simple types objects can require anonymous resource nodes). Rhizome deals
with this by allowing the application to declare properties that are used to partition an
RDF graph into coarser-grained objects to apply authorization to.

1
 Rhizome also

maintains a revision history of all changes to the system using named graphs to model
transactions. This allows changes to be monitored and inappropriate modifications to
be reverted when necessary.

3. Discussion

This section provides an overview of Rhizome’s architecture.

3.1 Architecture

Figure 2 illustrates the overall architecture of the Rhizome framework. Components
are arranged as a stack in which higher-level components depend on the lower-level
components, but not vice versa. Consider each layer from bottom to top:

1 Not discussed here is ways in which class inferences add complexity when rules based on
class types are allowed.

226

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 2. Rhizome’s architecture.

3.1.1 RxPath data access
RxPath is an RDF data access engine that provides a deterministic mapping between
the RDF abstract syntax and the XPath data model. This lets users access RDF data
stores as a (virtual) XML DOM (document object model) and query them using
RxPath, a language syntactically identical to XPath 1.0. This approach allows the full
range of XPath-based languages to be used to query and manipulate RDF models --
for example, XSLT for presentation and transformation, XUpdate[8] for modification,
Schematron for validation, and XForms for presentation and modification -- without
having to make any syntactical changes to those languages.

RxPath maps the set of (subject, predicate, object) triples in an RDF model into a
virtual and possibly infinitely recursive tree in which:

• the root has a child node corresponding to each resource in the model,

• each resource node has child nodes for each statement that it is the subject of

• each statement node has a single child node corresponding to the statement's
object.

If the statement’s object is a resource, it might in turn have child nodes that
correspond to the statements that the resource is subject of, and so on. Given such a

tree, an XPath expression such as /foaf:Document/dc:creator/* will select
a set containing all the authors of each document resource in the RDF model.
RxPath also supports “named graphs”[9] (also known as contexts), a common
extension to the RDF model that is used to partition RDF statements into groups.
RxPath uses a unique approach to contexts by treating them not as a one-to-one
mapping with a subgraph of an RDF model, but as a collection of subgraphs
composed through union and difference operators. This enables Rhizome to use

227

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

contexts simultaneously and efficiently to model many different concepts, such as
metadata versioning, transactions, provenance, application partitioning, and
personalization (user customizations). For example, Raccoon's transaction log of
changes made to the RDF store is represented as a collection of contexts, each of
which adds or subtracts from the previous context. Using contexts lets Rhizome
capture when, where, how, and by whom a set of statements was made.

3.1.2 Raccoon application server
Raccoon is a simple application server that uses an RDF model for its data store.
Raccoon uses RxPath to translate arbitrary requests — such as HTTP requests or
command line arguments — to RDF resources. Each of these can be associated with
style sheets in RxSLT and RxUpdate languages, which can generate responses or
update the RDF data store.
Raccoon's goal is to present a uniform and purely semantic environment for
applications. This enables the creation of applications that are easily migrated and
distributed and that are resistant to change. Raccoon is designed primarily for
applications that look at the world as a universe of RDF statements, but it also works
with XML-centric applications. Raccoon isn't designed to be a full-featured
application server and in fact will often be embedded in another application server.
Raccoon's job as an application server is a narrow one—to map a request to a
response, possibly modifying the state of the application in the process:

Request Application (Rules + Store) Response

A request is a dictionary of simple values, and an application defines a pipeline of
RxPath expressions that transform the request into the response. Raccoon presents
both the request and the application's state using the RxPath data model. This
approach enables the creation of applications that can be transparently distributed and
aggressively cached. Application code is always executed within the context of a
request. There are external requests, such as HTTP requests, and internal ones, such
as the requests sent when an application starts or stops. Raccoon also provides basic
transaction coordination for managing updates to the RDF store. Using contexts
enables the application to choose an appropriate consistency model for its needs. If
full global atomic consistency isn't needed, Raccoon can cache request responses even
more aggressively and still provide the appropriate levels of cache coherency.

3.1.3 Rhizome Wiki
Running on top of Raccoon is the actual Wiki application, which offers all the basic
functionality found in Wikis, such as letting users create and edit pages on an ad hoc
basis; along with some more advanced content management features such as roles and
groups, release workflow, and basic facet navigation. Almost all of the Wiki's
functionality is implemented in its dynamic pages, which are written in RxSLT,
XSLT, and RxUpdate. Users can edit these like any other pages, making it easy to
incrementally add and change functionality. They can also use RxUpdate to modify
the underlying schema at run-time.This flexibility makes access control very
important—to this end, Rhizome uses a flexible schema for authorizing both
application-level actions and statement-level changes to the RDF store based on the
authorization mechanism described in the previous section.

228

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3.2 Conclusion

This paper has examined some of Rhizome’s approaches to applying Wiki design
principles to the Semantic Web. Despite the challenges of marrying two very different
approaches to capturing knowledge, doing so can help reduce the barriers that often
hinder the adoption of Semantic Web technologies, such as high learning curves for
users, demands for precision and consistency, and the need to develop domain-
specific user interfaces.

References

1. Cunningham, W, Leuf, Bo.: The Wiki Way: Collaboration and Sharing on the Internet
Addison-Wesley Professional (2001)

2. Cunningham, W, et. al. http://c2.com/cgi/wiki?WikiDesignPrinciples
3. http://www.dfki.de/~paulb/ABCDEF/ABCDEF.htm

4. Souzis, A: Building a Semantic Wiki. IEEE Intelligent Systems (Sep/Oct 2005) 87-91
5. http://www.microformats.org
6. Hazael-Massieux, D., Connolly D.: Gleaning Resource Descriptions from Dialects of

Languages (GRDDL), World Wide Web Consortium (W3C) Note (2005)
7. ISO/IEC 19757-3 Document Schema Definition Languages: Part 3 — Rule-based validation

— Schematron (2004)
8. Laux, A., Martin, L.: XUpdate—XML Update Language, XUpdate Working Group

Specification (2000).
9. Carroll, J. et al.: Named Graphs, Provenance and Trust, In: Proc. 14th Int'l Conf. World

Wide Web (WWW 05), ACM Press, (2005), 613–622.

229

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Towards a Wiki Interchange Format (WIF)

Opening Semantic Wiki Content and Metadata

Max Völkel1 and Eyal Oren2

1 Forschungszentrum Informatik, Karlsruhe, Germany,
voelkel@fzi.de, http://xam.de

2 DERI Galway, Ireland
eyal.oren@deri.org, http://eyaloren.org

Abstract. Wikis are increasingly being used in world-wide, intranet and
even in personal settings. Unfortunately, current wikis are data islands:
people can read and edit them, but machines can only send around text
strings without structure. Wiki migration, publishing from one wiki to
another one and free choice of syntax hold back broader wiki usage.
We define a wiki interchange format (WIF) that allows data exchange be-
tween wikis and between related tools. Different from other approaches,
we also tackle page content and semantic annotations. The linking from
formal annotations to parts of a structured text is analysed and de-
scribed.

1 Introduction

Wikis are increasingly being used in world-wide, intranet and even in personal
settings. There are over 130 wiki engines listed in the C2 Wiki3. Google statistics
reveal that MediaWiki4 and TWiki are the most popular engines, with rising
tendency. MediaWiki has 314 × 109 hits, probably influenced by its usage on
Wikipedia, one of the top 20 most used websites5 in the world. TWiki6 with
30× 109 hits is mostly run in company intranets.

Apart from these two specialised wiki engines, the many other wiki engines
have relatively similar popularity7: PukiWiki (8,7 Mio), TikiWiki (7,1 Mio),
MoinMoin (6 Mio), Atlassian Confluence (4,2 Mio, commercial), PhpWiki (4
Mio), PmWiki (3,9 Mio), Xwiki (3,3 Mio), JspWiki (1,8 Mio), SnipSnap (1,8
Mio), JotSpot (1,5 Mio), UseMod (0,7 Mio), and SocialText (0,7 Mio, commer-
cial).

Unfortunately, the increasing usage of wikis leads to new problems, as many
people have to use multiple wikis, e. g. a personal (local) wiki, the company

3 http://c2.com/cgi/wiki?WikiEngines.
4 http://www.mediawiki.org.
5 according to Alexa.com, April 2006
6 http://www.twiki.org.
7 Based on Google queries since 2004 up to 28.03.2006. Google hit count can only be

a rough indicator of wiki engine popularity

230

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

intranet wiki, an external collaboration wiki and the Wikipedia for background
knowledge. But there is no interoperability between these wikis: despite their
open-ness, current wikis are data islands.

Ideally, one could export some or all pages from one wiki and import them
into another wiki, which uses a different wiki syntax and offers a different set of
features. But the diversity of different wiki syntaxes makes exchanging structured
content quite expensive: a converter has to written for each wiki that is to be
connected with other systems.8

Instead of writing conversion scripts between each pair of available wiki en-
gines we propose the use of a wiki interchange format. This reduces the imple-
mentation costs roughly from n2 to n for n different wiki engines. An interchange
format would also allow the independent creation of multiple wiki syntaxes and
user interfaces.

1.1 Structure of this paper

First we analyse requirements (see Sec. 2). In Sec. 3, we elaborate on what
constitutes to the wiki data model and which is the right layer of abstraction for
an interchange format. We also discuss interaction with wikis on the web. In Sec.
4, we make a proposal for a wiki interchange format (WIF) and a wiki archive
format (WAF). We present the concept of a Wiki Mediation Server to handle
runtime aspects of wiki migration. We report on implementation and experiences
in Sec. 5 and review some related work in Sec. 6. Finally, in Sec. 7 we conclude
and present future work.

2 Scenarios and Requirements

The following scenarios are currently not supported by existing wiki engines and
would profit from a wiki interchange format (WIF):

Exchanging wiki content. Currently, the only way to copy content from one
wiki to another one is through copy-and-paste and manual reformatting of
the text. This is painful and unnecessary, since most wikis offer similar con-
tent formatting and structuring abilities, namely those found in HTML (as
most wikis render their content as HTML). The rising popularity of personal
wikis adds even more weight to the need of exchanging content between wikis.

Wiki migration. Sometimes, the complete content of one wiki should be mi-
grated to another wiki, e. g. because another wiki engine should be used.
This implies migrating all pages. Ideally, user accounts and page histories
would also be migrated.

Wiki syntax united. Existing wikis use various different wiki syntaxes. Ide-
ally, one could use the same favoured syntax on all wikis.

8 Although some systems provide an HTML-import (e. g. JSPWiki [9] and TWiki),
this does not fully solve the problem, as most other wikis can only export pages
including navigational aids.

231

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Wiki archiving. Creating a browse-able off-line version of a wikis content, e. g.
to read on the train or as a backup.

Wiki synchronising. One of the big advantages of a wiki is the easy linking
ability: users just have to remember the page title to create a link. External
links require much more effort. Persons participating in multiple wikis have
to remember many logins, navigation schemes and wiki syntaxes. Ideally, on
could change a page in wiki a and have it automatically changed in wiki b
as well.

From these scenarios and additional thinking, we can derive a number of require-
ments for a WIF:

Round-tripping: Full data round-tripping is the overall goal. Ideally, one could
export all content of a wiki site into WIF and import it back again into
another wiki installation without loss of data or structure. E. g.: If we have
two wikis a and b, where a has a very rich and b a very little page structure
model, the transition a→ b (i) would be useful for users of wiki b, even if a
lot of structure within the pages would be lost due to the restricted page data
model of wiki b. The mapping b→ a (ii) would also in general be beneficial
for the users of wiki a. The problems arise with mappings like a → b → a
(iii). Now the users of wiki a would be faced with a loss of structure which
they used to have before the export and re-import of data. This is a problem
that cannot be solved in general, due to the lower expressivity of wiki b. As
the mappings (i) and (ii) are useful in practice for wiki migration, we have
to find a format that is expressive enough.

Easy to implement: as we need a way to obtain the WIF for each different
wiki engine, it is important to keep development costs low.

Renderable: WIF files should be renderable in standard browsers.
Completeness: If a wiki lists e. g. all pages in the category “employee” using

some kind of plugin, a WIF should export this information in an appropriate
format. Wikis with a similar powerful plugin system would profit from an
interchange format that keeps a reference to the plugin used. Less capable
wikis, however, would need the content generated by the plugin, as they
do not have the power to generate the content themselves. Users migrating
from a wiki with a particular feature to another wiki engine would rather
profit from having dynamic content materialised into static content than not
having access to that content at all.

Compactness: The single-page-WIF needs to encode all structural information
of a wiki, e. g. nested lists, headlines, tables, nested paragraphs, emphasised
or strongly emphasised words. But it does not need to encode font size or
font color.

Ease of Use: It should not only be easy to generate single-page-WIF, it should
also be easy to work with it.

2.1 Experiences in Wiki Migration

Recently, in one of the authors’ research groups, the intranet was migrated from
SnipSnap wiki to MediaWiki – to use features of the Semantic MediaWiki ex-

232

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

tension [19]. As WIF was not ready at that time, one person manually converted
the contents. As he migrated a wiki before, the basic task was not new to him.
He worked on the stored text files and used a 213 lines long bash script, which
in turn called 102 lines of sed and 29 and 34 lines of awk [4].

Reported problems where the unusual SnipSnap syntax - opening and closing
tags are the same for plugins. Encoding was also an issue. Comments where
migrated to MediaWiki discussion page sections. Finally, a generated XML file
is imported using a MediaWiki XML import feature.

The approach took about 20 hours of work, would require significant refactor-
ing before applicable to another target or source wiki engine, depends on having
admin rights on the source and target wiki server and relies on specifics of the
wiki engines, e. g. the XML import of MediaWiki.

3 Analysis and Discussion

In this section we arguet that an interchange format has to exchange data on
the level of the wiki data model an not on the wiki syntax level. Additionally,
we show which parts of the wiki data model are relevant for a WIF.

One could try to standardise the wiki syntax, as many people suggested on
diverse wiki and web pages [1]. A standard markup would indeed be of great
benefit for novice users and data migration. But in reality, existing wikis are
unlikely to change the established syntax rules. For new wiki engines, the Medi-
aWiki syntax should be considered, as it is likely to be the most widely known
syntax. Some new Semantic Wikis such as IkeWiki adopt this approach. On the
other hand, innovation in wiki engines and wiki syntaxes is still high: new wiki
engines and new wiki features, such as semantic annotations and plugins, need
syntax extensions as well.

Therefore, standardising wiki syntax is not a feasible solution; instead we
propose to define a standard format for the data model.

As we want to exchange the data structures of a wiki page, we abstract away
form the ways these structures were created. E. g. a bulleted list is a structural
concept, worth exporting, while the syntax that was used to create this structure
(star or minus sign at the beginning of a line) is of less interest for other wikis
or tools.

Unfortunately, most wiki engines have no formal data model published. Their
data models are defined only by their implementation of wiki syntax and ren-
dering. In order to obtain a common wiki data format, one would have to

– formalise existing wiki data models including page graph, page metadata
and the structured page content, and

– identify the union of all formalised data models.

We looked into the data models of SnipSnap (used as the intranet of one of the
authors’ institute), MediaWiki (popular, see Sec. 1) and JspWiki (used by one
of the authors as a personal desktop wiki).

233

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3.1 Wiki data model

What is in a wiki? Several definitions are possible, we go for a definition from
the end-user point of view. The end-user has two ways of interacting with wiki
content. She can either browse (read-only) the hypertext version or create and
change content of pages using wiki syntax. It is the content written by users,
that has to be migrated to other wiki engines. Some important wiki features
such as “backlinks” are inferrable form the user-entered content. Arguably, usage
data such as “10 most accessed pages”or the“recently changed pages” contribute
considerably to the wiki usability. This data cannot be manipulated directly by
users through the web interface. So we have to ask ourselves:

Wiki
Page

User Attachment

Section

Title
List

Table

Paragraph

Link
Time

…

*

*

*

*

*

*

Page Graph Page Content

Table 1. A high-level view on the wiki data model

What constitutes the data model of a wiki? The content of a wiki is defined
by the page graph including page metadata and the actual content of pages.
Figure 1 shows some of the most common elements of a wiki data model. Existing
exchange formats tackle the page graph part (as XML dialects), but often simply
embed the page content part as wiki syntax (e. g. MediaWiki, SnipSnap). This is
maybe due the fact that most wiki engines have an internal representation of the
page graph but not necessarily a detailed representation of a page given in wiki
text. In fact, pages are often rendered by wikis using a cascade of text search
and replace commands using carefully crafted regular expressions. To sum up,
we distinguish three levels of data for wiki content:

A wiki page consisting of:
Content structure: e. g. headlines, nested lists, tables, or other elements

that state a visual relation between content items.
Content style: e. g. font size, font color, bold, italic or other visual render-

ing of content items.
Content semantics: e. g. user authored content, backlinks, lists generated

by a plugin or macro, embedding of other wiki pages, or a reference
to a variable that display the number of pages in a wiki. The content
semantics are invisible to e. g. an HTML processor.

Metadata about a wiki page. We have two kinds of metadata (at least in
a Semantic Wiki context):

234

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Explicit metadata as stated by semantic annotations or as defined in spe-
cial user interface elements (i. e. access rights).

Application metadata such as last editor, creator of a page, previous ver-
sion. This metadata cannot be changed directly by the user, only indi-
rectly through application usage.

Global wiki data such as user accounts.

3.2 Semantic Wiki data model

Semantic Wikis such as SemperWiki [15, 14] add the notion of formal annotations
to wikis, and we therefore extend the data model with annotations. We model
an annotation consisting of three parts [16]:

1. A real world artefact that is annotated, such as a person, a book, or a web
resource.

2. A formal identifier for the real-world artefact, such as an ISBN number or a
URI [2].
The link from identifier to real-world artefact is outside the expressiveness
of formal systems. In RDF, we face an additional problem: URIs are used
both as concept identifiers and as locators (URL) of resources on the WWW.
Given the URI of a web resource, what is the URI of the concept described
on that web page?
In WIF, we solve the so-called “URI crisis” by using mirror-URIs [16]: for
each web-locatable URI we construct a non-locatable URI by prefixing it
with the URN-scheme ‘concept’ and URL-encoding characters as necessary.
Such a mirror URI describes “the primary concept mentioned in the human-
readable representation of the resource a”. E. g. http://w3.org represents
the web page of the W3 consortium, while urn:concept:http://w3.org
could denote the consortium itself. The exact meaning of the URN is up to
a social process outside the scope of this paper. Nevertheless, the distinction
between locatable web resources and concepts is crucial.

3. Formal statements about the real-world artefact, using the formal identifier
as a placeholder. We assume formal annotations to be represented as RDF
[12]. Note that the formal statements can also include information about
provenance or scope of the annotation.

4 Design

In this section we describe the design of the wiki interchange format (WIF) for
a single page and the wiki archive format (WAF) for a set of wiki pages.

4.1 WIF – A single-page wiki interchange format

We map wiki pages to directories on a storage medium or in a zip file. Each
folder contains:

235

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

index.html - the unchanged html file corresponding to the wiki. Includes all
navigation buttons and forms. This view helps to identify content visually.
CSS files should be included. This file can be obtained with simple HTTP-
GET tools, such as WGET.

wiki.txt - the source code in wiki syntax. This is a simple to implement fall-
back, if other steps in the conversion process produced wrong or suspicious
output.

wif.xhtml - the wiki interchange format. In order to fulfill requirement “Ren-
derable” (c. f. Sec. 2, WIF should re-use elements of HTML or XHTML.
We decided to re-use XHTML elements, which are both open for machine
processing, due to its XML nature as well as human viewable, using a stan-
dard browser. It is no problem to use elements not defined in XHTML:
Browsers are requested to ignore unknown elements9.
WIF should be valid XML. This allows to use XSLT stylesheets to convert
WIF back into a wiki syntax of choice. XSLT stylesheets can be run on all
platforms, many programming languages, and even in some browsers.
The number of WIF-elements should be small, in order to facilitate further
processing (req.“ease of use”). A study by Google shows 10, that most HTML
pages contain an average of only 19 different elements.

index.rdf - Annotations as RDF files. Meta-data, such as the distinction be-
tween wiki-link or external link is carried by using special XHTML attributes
and values. This approach is inspired by Microformats11. More complex or
user-given page meta-data should be stored in a linked RDF file.
In order to round-trip wiki specific features such as templates and macros, we
represent them as annotations. The basic wiki page is exported as rendered.
This fulfills requirement “Completeness” and ensures that another (even less
capable) wiki, will show the page as the user knows it.
For macros and templates, annotations carry the additional hint that and
how this part of the page was generated. Simple tools can only process the
page as is, while smarter tools can exploit the knowledge of the annotations
and e. g. update pages when a template is changed.

Attachments - Like emails, wiki pages can have arbitrary files attached to
them. In order to store such files, we simply store them as files and link
them from the WIF page. File creation date and other file related metadata
can be encoded in the native file attributes.

Now we take a closer look at wif.xhtml. Which wiki structures are most
important? We can distinguish three levels of formatting:

Linking is probably the most important element of a wiki. Wikis distinguish
links to other wiki pages in the same wiki (wiki-links), links to pages in other
wikis (interwiki-links) and links to any other web resource (external links).

9 but process the content, for details see http://www.w3.org/TR/xhtml1/#uaconf
10 http://code.google.com/webstats/index.html.
11 http://www.microformats.org.

236

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Layout (inline-level) is used to highlight parts of a text item. Basically, only
bold and italic text can be used. For bold, HTML offers or ,
for italic or <i>. In single-page-WIF, we use only and
, to simplify its usage (req. Ease of Use). CSS layout is already sepa-
rated from XHTML markup and is simply ignored.

Structure (block-level) is used to relate textual items on a page. Structural
tags are paragraphs, headlines, lists and tables. Additionally, pages can con-
tain horizontal lines and pre-formatted sections.

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE html PUBLIC"-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html>

<head>

<title>...wiki page title ... </title>

</head>

<body>

... page content ...

</body>

</html>

Table 2. The basic WIF page

A WIF-page thus has the structure shown in Fig. 2. WIF-Pages should al-
ways be UTF-8-encoded, to simplify further processing. The doctype should be
XHTML 1.1. The title-element should be present and contain the wiki page
title. The header may contain arbitrary additional elements.

To sum up, element tags used by WIF-processors in the WIF page body are:
a, dd, dl, dt, em, h1, h2, h3, h4, h5, h6, hr, li, ol, pre, strong,
table, td, tr and ul. Other elements in the body of a WIF page may be
ignored. The WIF page has to be a valid XHTML document, i. e. the usual
XHTML element nesting rules apply.

We reserve some attributes and values to encode special wiki semantics: In
links (<a>), we use the attribute class to specify the nature of a link: wiki,
interwiki or external. This approach is inspired by microformats ideas 12, and
keeps WIF-pages valid XHTML and makes rendering in a browser easy. Note
that an HTML-element may have multiple space-separated classes. As the title
of a wiki page is often encoded, in order to make it a valid URL or filename,
each link to an internal or external wiki page should also have a title-attribute
with the wiki page title.

12 http://www.microformats.org.

237

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

4.2 Linking pages with annotations

In order to keep the link between wiki pages (represented as XHTML) and their
annotations (represented as RDF), we face a number of options. The problem is
in principle the same as describing elements of one ore more XML documents
with RDF. Keeping the link is important, e. g. to record from which parts of an
XHTML page an RDF statement was derived from.

Embed XHTML elements in RDF: The idea is to mimic the XML tag re-
lations with RDF predicates, similar to the ideas in [11, 5]. Thus we would
end up having e. g. a relation :hasHead which corresponds to the <head>
tag. The content of XHTML tags would be stored as individual plain RDF
literals. Thus granularity of content would be exactly at the level of tags,
which is not sufficient.

Embed RDF in XHTML: A W3C proposal dubbed “RDF/A” specifies how
to encode (even arbitrary) RDF as XHTML attributes (hence the “A” in
the name). GRDDL13 can extract the RDF back out of the XHTML file.
RDF/A files are not valid XHTML files, as they introduce some changes
to the document structure. Additionally, current RDF infrastructure cannot
operate on RDF/A files.

Embed Page: One could embed the whole XML file as one big XML literal
into an RDF graph. Then we loose interoperability with current XML in-
frastructure, e. g. a browser cannot even show the embedded pages.

Link RDF file: We leave the XHTML content as a separate file, and point to
an RDF file from the <head>-element. In this RDF file, we can reference
the XHTML page using the local filename (e. g. HowToPrint.html).
Referencing parts of the XML file could be achieved by appending an XPointer
[6] to the (relative) URI representing the XML document, e. g.
wif.xhtml#xpointer(/html/head/title) could denote the title of the WIF
page stored as wif.xhtml. This approach is used by semantic web annota-
tion tools such as CREAM [7] and Annotea [10]. Even before XPointer was
specified, people used fragment identifiers to denote parts of documents [8].
The relation between the URI representing the XML document fragment and
the XML document must be stated explicitly, as current RDF infrastruc-
ture does not handle XPointer expressions, e.,g. by a triple like adding
wif.xhtml#xpointer(/html/head/title) wif:partOf wif.xhtml. With more
formal defintions of the ‘concept’ namespace ID such statements could be in-
ferred automatically. This approach is also used in CREAM [7] and Annotea
[10].
However, there is a conceptual drawback: The web architecture and RDF
speak about resources. An XML document is not a resource, but a repre-
sentation of a resource. URIs are defined as resource identifiers. The repre-
sentation returned by a server depends not only on the URI but also e. g.
on the accept-header of the HTTP request. The semantics of the ‘concept’
namespace ID are thus defined explicitly only for XML content types. The
XPointer specification uses the same approach.

13 http://www.w3.org/2004/01/rdxh/spec.

238

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

For binary files, we propose a pragmatic approach: Each file called file-
name.ext can have an accompanying file filename.rdf which stores the meta-
data of that file. Both files are included in the wiki archive format, which is
described in the next section.example

Fig. 1. WAF Example

4.3 WAF – The wiki archive format

Two use cases need a complete WAF, as opposed to a single-page-WIF:

Wiki migration. Here we have to handle the requirement to move a set of
wiki pages at once. The easiest way to move multiple wiki pages across the
network is probably to re-use an archive format such as the zip format. The
same approach is taken in the Java world to handle a set of Java class files
as a .jar file, which is a zip archive with a special structure. Another popular
example of zip file usage is the open office format 14, which stores a set of
XML files that together constitute one document.

Wiki archiving. Using a zip file with subdirectories for each wiki page has
the additional benefit that, if done right, this archive can be extracted and
viewed off-line, using a standard browser. Hierarchical namespaces can be
modeled as subfolders.

We propose to use a zip archive consisting a set of WIF files. For Semantic
Wikis, we also include RDF files, linked from XHTML files. For pragmatic rea-
sons, we decided not to include different versions of a wiki page in the inter-
change format. WIF files should be legal XHTML files and the links between the
pages should point to each other (e. g. a wiki page a linking to a page called
“HowToPrint” would contain the snipped ... <a href="HowToPrint.html"
title="HowToPrint" class="wiki"> HowToPrint ... All WIF files should
have a file extension of ”.html”. RDF files can have any extension (besides .html)
as and should be linked from the XHTML files. Background knowledge, not re-
lated to a particular page should be stored as index.rdf in the root folder of
the WAF zip file. An example of a WAF archive with six exported wiki pages is
shown in 1.
14 http://www.oasis-open.org/committees/office/.

239

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

4.4 Wiki Mediation Server

At runtime, we need a component that provides translation from one wiki into
WIF and from WIF back into wiki syntax. For migration, the component should
also interact with wikis through their web interfaces, simulating a human editor.
This idea is similar to WikiGateway [17], but WikiGateway does not address
the problem of page structure translation. In order to provide WIF-translation
services also for other tools, we use a service oriented architecture, as shown in
Figure 2. This architecture allows a user independent of the wiki engines source
and target to migrate wiki content. The functions offered by the wiki mediation
server are:

GetPage(t) retrieves a WIF representation of a wiki page p, given its title t.
PutPage(p,t) converts a page p given in WIF into a wiki syntax of choice and

stores it under a given page title t.
GetRecentChanges(u) gives a list of pages (with URLs) that have been changed

after a given point in time, including a time stamp indicating the last change.
GetIndex() returns a list of all pages stored in the wiki. The list should contain

URLs.

We show now how this design solves the scenarios given in Sec. 2 and then
describe the design of the specific functions.

Migrating wiki content: In order to migrate a page with title t from wiki a
to wiki b, we call migrate(t,a,b) which calls in turn x = a.getPage(p)
and then b.putPage(x).

Wiki synchronising. In order to synchronise the wiki a with wiki b, the wiki
mediation server has regularly to invoke a.GetRecentChanges, for all pages
that have been changed after the last invocation of this function. Then, for
each page p with title t that has been changed, we call migrate(t,a,b).

Wiki syntax united. In order to use an arbitrary wiki syntax s for a wiki a,
we propose to use a proxy-wiki, which works as follows. For rendering a page
with title t, we return a.getPage(t). When a user wants to edit a page, we
call a.getPage(t), and convert the obtained WIF into syntax c. Upon page
save, we convert the wiki text in syntax c back to WIF and put the result r
using a.putPage(r) back into wiki a.

Source Wiki Target Wiki

Wiki Mediation Server

HTML, RDF

WIF

Wiki Syntax

Office formats, …

Fig. 2. Software Architecture for Remote Wiki Migration

240

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

5 Implementation and Experiences

A proof-of-concept implementation has been developed in Java made available as
open source (LGPL) at http://wif.ontoware.org. Currently, it only exports a
SnipSnap wiki – accessed via the web interface – into WAF. Support for JSPWiki
import is being added. Output rendering for MediaWiki is available.

How do we obtain the data from a wiki? As each wiki has some kind of data
persistence, the wiki administrator could access a wikis content on this layer. But
each wiki has a different kind of persistence (e. g. text files, data bases, RDF),
so writing adapters would require very different skills.

For open-source wiki engines, one could add a new export function to the code
base. This would require to handle a large number of programming languages.

In order to migrate from abandoned wiki engines which are no longer main-
tained or where the user who wishes to migrate has not the necessary admin
rights, we need another solution.

As almost every wiki has an HTML output, one could also try to get the
content from there. Simulating a browser that clicks on “Edit this page” and
other wiki core functions, one could get access to the same set of data as a user.

Current Wiki-APIs (XML-RPC based ones can be found e. g. in JspWiki15,
Atlassian Confluence16, XWiki17) stop at the page graph level. A page can ei-
ther be retrieved as raw text (wiki syntax) or rendered as HTML. The HTML
version is often enriched by additionally inferred information, such as backlinks.
Such information is harder to extract from HTML than from wiki syntax, e. g.
the difference between wikilinks and external links can only be computed by
comparing the base URL of a page with the link target. Nevertheless, Wiki en-
gines use quite different syntaxes, but (almost) all wikis emit HTML in the user
interface. Thus starting with the HTML syntax significantly eases development.

Semantic wikis offer the same ways of obtaining the data. Usually semantic
data is made accessible via a link from the HTML version. Note that current
semantic wikis do not retain the link which statement was generated from which
part of the page.

As less then 1% of all web pages are valid (X)HTML [13], in the sense
of passing the W3C validator18, we cannot expect wikis to emit only valid
HTML. Fortunately, there are a number of software components available, that
mimic the parser behaviour in browsers to transform ill-formed HTML into
well-formed (X)HTML. As analysed in [18], the best performing component is
CyberNEKO19. CyberNEKO transforms any ill-formed HTML input into well-
formed XML, add missing opening and closing tags as necessary.

Individual pages are read with the Jakarta Commons HttpClient and post-
processed with custom XSL transformations into WIF. HTTP Basic Authenti-

15 http://www.jspwiki.org.
16 http://confluence.atlassian.com.
17 http://www.xwiki.org
18 http://validator.w3.org/.
19 http://people.apache.org/~andyc/neko/doc/html/.

241

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

cation is used to get into protected pages, login data has to be supplied by the
user as URL parameters.

Although we lose some information (such as slight syntax variations), we
can obtain most information even from the HTML data. We simply compare
the <base href> of the page with the link targets. If the query string or last
path segment (for mod rewrite) matches the target, it is a link to the wiki. As
this matching is done in the stylesheet, more complicated transformations are
possible. It is e. g. possible to detect Wikipedias Inter-language-Links and mark
them up as such in WIF, e. g. by adding a CSS class for the target language to
the link class. We ignore linked CSS stylesheets and some presentational tags,
in order to get a more concise WIF, fulfilling requirement “Compactness”.

The page index is read from the index page, which all wiki engines provde,
and post-processed with XPath [3] expressions to get the actual page names.

Internally, the mediation server relies on Jetty20, as an embedded web server,
and JRest21, as an automatic mapping from Java objects to RESTful servlets.

A demo server is currently set up, serving a WAF-archive for any SnipSnap
wiki. A login is simulated in order to obtain the text-files in wiki syntax.

5.1 Experiences

No formal evaluation has been done. Instead, we review what we achieved.
Using WIF can dramatically lower the costs required to migrate wiki content.

As in most integration problems using an intermediate format (WIF) reduces
the number of translators needed from n2 to 2n. The process of writing the
translators from HTML to WIF can partially be automated (see [18]. As WIF
consists of less elements than full XHTML, XSL stylesheets to convert WIF back
into wiki syntax are easier to write.

Future wikis can use the Wiki Mediation Server to offer real-time wiki syntax
of choice. To do this, they have to act as a proxy. When a user edits a page, the
user entered text in syntax a is run through the parser of a wiki a, resulting in
HTML. That HTML is converted first to WIF and then to wiki syntax b. This
syntax b is then stored in wiki b.

First tests show that the transformation from SnipSnap’s HTML to clean
XHTML and than via custom XSLT to WIF is indeed possible. Another XSLT
was written to convert WIF to MediaWiki syntax.

Mapping wiki pages to folders leaves much freedom. The format is extensi-
ble, i. e. more files can be stored in the same directory, e. g. different versions.
Complete static web sites can be generated from a WAF file, in fact, a WAF file
is a static web site, in one zip file. This makes WAF also an ideal wiki backup
format, with no need to keep the original server infrastructure alive. Alas some
features (e. g. full-text search) get lost.

The problem with this approach is the reference management. To create a
valid reference between static wiki pages, one has to link to /PageName/index.html,
instead of just the page name.
20 http://www.mortbay.org.
21 http://jrest.ontoware.org.

242

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

6 Related Work

There are several proposals about wiki standardisation. The WikiModel22, ad-
dresses an in-memory model for wikis in Java, using a particular semantic model
(pages with sections, allowing page inclusion). WikiModel includes a clever wiki
syntax and parser design.

WikiWyg23 is an approach to offer in-browser WYSIWYG editing of wiki
content. To do this, WikiWyg uses Javascript to convert from DOM to wiki
syntax. Oddmuse24 has an integration with Emacs 25 which allows users to read
and update pages with Emacs, a desktop-based text editor.

Similar to WikiGateway, an extension to JSPWiki written by Janne Jalkanen
[9], allows to get and put pages. DavWiki exposes the wiki pages as text files in
a WebDAV directory. Note that the syntax conversion problem is left untackled.

SweetWiki26 uses RDF/A to encode semantic annotations in HTML pages.
Annotations can only be on the page level, not allowing annotating parts of a
page. IkeWiki offers a custom XML-based export format. It is similar in spirit
to WIF, as it exports only the core structures. But different from WIF, IkeWikis
export is not suitable for viewing in a browser.

7 Conclusion and Outlook

We have shown how a wiki interchange format should be designed. Although our
model is still in a prototype stage, we have carved the path for the development
of a true Wiki Interchange Format. A reference implementation is available.

A standardisation effort needs consensus. We hope to continue the discussion
that started at the WikiSym 2005 as Wiki Standardisation Request 3 on the wiki
page http://www.wikisym.org/wiki/index.php/WSR_3. The next steps are a
more precise requirements gathering and and RFC-style document.

Acknowledgments: This material is based upon works supported by the Science Foun-
dation Ireland under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694. This
research was partially supported by the European Commission under contract FP6-
507482 (Knowledge Web) and FP6-027705 (Nepomuk). The expressed content is the
view of the authors but not necessarily the view of the Knowledge Web Network of
Excellence as a whole.

We thank Sebastian Gerke and Werner Thiemann for their help in creating the
Wiki Exchange Format, and Dirk Riehle for initiating the BOF at the WikiSym 2005,
where all this started. Thanks also to Mikhail Kotelnikov and Malte Kiesel for lengthy
and fruitful discussions, and special thanks to Dirk Achenbach who went the painful
way of manual wiki migration.

22 http://wikimodel.sourceforge.net/.
23 http://www.wikiwyg.net.
24 http://www.oddmuse.org.
25 http://www.gnu.org/software/emacs/.
26 http://wiki.ontoworld.org/wiki/SweetWiki.

243

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

References

1. M. Altheim. Inter wiki markup language (iwml), 03 2004.
2. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier (uri):

Generic syntax. Rfc 3986, The Internet Society, Jan 2005.
3. J. Clark and S. DeRose. Xml path language (xpath) version 1.0. Technical report,

W3C, Nov 1999.
4. D. Dougherty and A. Robbins. sed & awk (2nd Edition). O’Reilly Media, Inc.,

March 1997.
5. M. Erdmann and R. Studer. How to structure and access xml documents with

ontologies. Danta and Knowledge Engineering, 2000.
6. P. Grosso, E. M. J. Marsh, and N. Walsh. Xpointer framework. W3c recommen-

dation 25 march 2003, W3C, MAR 2003.
7. S. Handschuh and S. Staab. Cream - creating metadata for the semantic web.

Computer Networks, 42:579–598, AUG 2003. Elsevier.
8. M. Hori, R. Mohan, H. Maruyama, and S. Singhal. Annotation of web content for

transcoding. W3C Note, July 1999.
9. J. Jalkanen. Davwiki – the next step of wikirpcinterfaces? In Proceedings of Wiki-

mania 2005 - The First International Wikimedia Conference. Wikimedia Founda-
tion, JUL 2005.

10. J. Kahan and M.-R. Koivunen. Annotea: an open RDF infrastructure for shared
web annotations. In Proceedings of the 10th International World Wide Web Con-
ference, pages 623–632, 2001.

11. M. Klein. Interpreting XML via an RDF Schema. IOS Press, Amsterdam, 2003.
12. G. Klyne and J. J. Carroll. Resource description framework (RDF): Concepts and

abstract syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/,
February 2004.

13. M. L. Noga and M. Völkel. From web pages to web services with wal. In NCWS
2003, Växjö, Sweden, NOV 2003. Mathematical Modelling in Physics Engineering
and Cognitive Science.

14. E. Oren. SemperWiki: a semantic personal wiki. In S. Decker, J. Park, D. Quan,
and L. Sauermann, editors, The Semantic Desktop – Next Generation Information
Management & Collaboration Infrastructure, Galway, Ireland, 2005.

15. E. Oren, J. G. Breslin, and S. Decker. How semantics make better wikis. In WWW
(poster), 2006.

16. E. Oren, R. Delbru, K. Möller, M. Völkel, and S. Handschuh. Annotation and
navigation in semantic wikis. In M. Völkel and S. Schaffert, editors, Proceedings
of the First Workshop on Semantic Wikis - From Wiki to Semantics at the ESWC
2006, May 2006.

17. B. Shanks. Wikigateway: a library for interoperability and accelerated wiki de-
velopment. In WikiSym ’05: Proceedings of the 2005 international symposium on
Wikis, pages 53–66, New York, NY, USA, 2005. ACM Press.

18. M. Völkel. Extraktion von XML aus HTML-seiten – das WYSIWYG-werkzeug
d2c. Diplomarbeit, May 2003.

19. M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer. Semantic
wikipedia. In Proceedings of the 15th international conference on World Wide
Web, WWW 2006, Edinburgh, Scotland, May 23-26, 2006, May 2006.

244

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

A Collaborative Programming Environment for
Web Interoperability

Adam Cheyer and Joshua Levy

SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
adam.cheyer@sri.com, levy@csl.sri.com

Abstract. We describe a new type of collaborative system that exhibits
much of the simple, cooperative nature of a wiki, but allows dynamic
sharing of functionality as well as of content. In contrast with tradi-
tional wikis, pages in this system are executable, and interoperate with
each other by passing and returning data structures of known type, such
as messages, URLs, or locations. This collaborative programming envi-
ronment is well suited to retrieving and combining content available on
the Web. Since code within pages can access any type of Web content,
the environment provides a collaborative way to convert diverse, un-
structured information into semantically annotated content that can be
combined into new and useful services. We discuss how these ideas have
been applied in WubHub, a prototype Web portal with a command-line
interface.

1 Introduction

The rise of dynamic, massively multi-user Web applications has led to the rapid
success of wikis, social bookmarking services, and similar tools, and begun to
demonstrate the immense potential of large-scale collaborative software. Promi-
nent recent successes include Wikipedia, Flickr, and del.icio.us [1–3], but current
examples have become too numerous to list.

So far, most such systems have focused on the capture and retrieval of data
that is mostly unstructured, like text (in wikis), or of a small number of prede-
fined types, such as URLs (del.icio.us), images (Flickr), or tags (numerous sites).
Increasingly, the key features of wiki-like tools – collaboration and ease of use –
are being applied in new contexts, in systems that work with new types of data,
and with data of increasingly rich variety.

This trend shows great promise in addressing the long-standing and difficult
problem of semantic interoperability on the Web. A fundamental tenet of the
Semantic Web effort is that increased semantic annotation increases opportuni-
ties for use of online services, including automated or semi-automated service
discovery, composition, and invocation [4, 5]. At the same time, as the “Web 2.0”
phenomenon has demonstrated, collaborative tools, even with very limited and
informal semantic support, can dramatically increase the knowledge captured
and accessible to users. The challenge – and the opportunity – is to find a way
to accommodate greater semantic precision while simultaneously encouraging

245

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

and reaping the benefits of large-scale community collaboration. Recent efforts
ranging from microformats [6] to semantic wikis [7–9] are identifying a variety
of approaches to reconciling these apparently conflicting goals.

In this paper, we outline a somewhat different angle on the same problem.
Most existing collaborative sites, including newer systems like semantic wikis,
are content oriented. We describe a collaborative framework that is service ori-
ented, permitting sharing of services as well as of content. It is a collaborative
programming environment that can access and integrate existing online content
and services. In particular, it can extract structured information from existing
unstructured Web content and combine it to produce new functionality. The
collaborative process of defining new services simultaneously enables semantic
annotation of existing unstructured data. Although it is still immature, we be-
lieve this framework could lead to practical and effective approaches to solving
some current problems in Web interoperability.

In the next section we give a brief example of collaboratively defined ser-
vices. Section 3 addresses design considerations for the underlying collaborative
programming environment. Section 4 describes our proof-of-concept implemen-
tation. Sections 5 and 6 hold some additional discussion and related work. Future
work is described in Sect. 7.

2 A Collaborative Service Portal

We motivate our discussion by sketching some examples of user interaction with
WubHub, a proof-of-concept Web portal we have built that demonstrates col-
laboratively programmable services.

2.1 Calling and Combining Commands

The user visits the Web portal. Its interface consists of an input field – a Web-
based command line – and a frame that displays content. The user can type in
commands that perform many different services, such as retrieving information,
performing an action or computation, or converting data. Commands can accept
input as arguments, and provide a return value, which is displayed in the content
frame. Commands can perform many useful everyday tasks. Figure 1 shows some
typical commands. Figure 2 shows the portal in use.

Commands in WubHub can be composed to produce novel functionality, ei-
ther within a new command definition or directly on the command line. For
example, a user might employ three independently contributed functions to dis-
play a map with friends’ locations, by typing

map: geocode: friends()

2.2 Finding and Editing Pages

What is novel about WubHub is not the commands themselves, but that these
commands are built collaboratively by users. Just as wiki pages may be created

246

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

– distance(94702, 94025): Use an online map service to calculate direc-
tions between two US zip codes, and return the driving distance between
those points.

– dict(forgetful): Look up the word “forgetful” in an online dictionary,
extract the definition from the page, and return it to the user.

– geocode("San Francisco, CA"): Return the latitude and longitude of
the specified address.

– slashsearch(linux): Get a list of links to recent Slashdot articles men-
tioning Linux.

– azn(dickens): Redirect the user’s browser to Amazon’s search results for
“Dickens.”

Fig. 1. Some example WubHub commands.

by one user and improved upon by others, WubHub pages containing content,
presentation logic, data conversion, or computational functions can be woven to-
gether in an iterative way by a distributed community. Commands that perform
services are written as pages containing a scripting language that allows access
to remote Web sites and flexible manipulation of structured and unstructured
data. Like conventional subroutines, pages may call other WubHub pages. The
portal also provides simple development support, allowing the user to try writing
new scripts and to debug them.

As users create new content and commands, they can organize and search
for them using collaborative tagging. Additional meta-data makes it easy to
discover pages added by the community using commands and subscriptions such
as “whatsnew” and “popular” (Fig. 3). Finally, users can view the source code
to any WubHub page, including system commands, and either modify the page
directly (if they have sufficient privileges) or copy it to a local space where they
can make their own variants. Just as a “view source” capability was essential to
the proliferation of the HTML-based Web, we believe it can accelerate innovation
and adoption in a WubHub-like environment.

2.3 Collaborative Programming and Semantic Annotation

In short, WubHub is a collaborative platform for service development, where
users can add new services to the system, and data can be passed from service
to service easily. In addition, since the scripting layer has the ability to extract
data with known semantics from unstructured, ad hoc Web content, it can si-
multaneously provide a way to add semantic annotation to unstructured data
on the Web.

3 Collaborative Programming

The collaborative service portal we have sketched is an example of a general
type of collaborative system: A lightweight, highly collaborative programming

247

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

Fig. 2. A screen shot of WubHub, showing the result of executing a command to get
a definition of a word. The user is now typing in a second command that will redirect
to a Google image search for “pikas.”

environment. This notion is quite new, and the proper design for such an envi-
ronment, or even a complete set of requirements for one, is not yet fully appar-
ent. However, our experience with WubHub has helped illuminate some basic
requirements and an architecture, which we outline in this section.

3.1 Pages as Functions

The environment’s main elements are

– Shared storage for pages holding pieces of content or code
– An execution environment, with a programming language and type system
– A user interface, with support for invoking commands and wiki-like editing

of pages

A page in the environment is like a function in a programming language, with
arguments and a return value, that is visible to, and modifiable by, many users.
Essentially, the wiki-like editing capabilities are a front end for editing function
definitions, and these functions may be executed, as if they were in a conventional
(single-user) scripting environment. As in a traditional wiki, pages may actually
contain only declarative data, such as text or HTML, which is really a special
case where they accept no arguments, and provide their content as a return
value. In effect, pages are variables within the programming environment, which
may hold either functions or data.

248

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

– ls: List visible commands.
– tags: Browse pages by community tags.
– whatsnew: List recently created commands.
– view(whatsnew): View the source code to the whatsnew command.
– edit(whatsnew): Open a form for editing the source to the whatsnew

command.
– create: Open a form for creating a new command.

Fig. 3. Selected commands for discovering, creating, and modifying pages.

3.2 Page Storage

Page storage is shared, so that all users have immediate access to pages from
other users. Essentially, we desire a shared, transparent program and data per-
sistence mechanism. Pages may be called from other pages directly, as if they
were functions defined within the programming language.1

In addition to the page name and the body of a page, page records include
signature information, a description, and other meta-data, such as tags added
by users. For better organization, pages may be arranged into a hierarchy of
modules. In general, the typical features of content repositories, including search,
versioning, conflict detection, and access control, must be supported. A primary
goal of the system is to encourage collaboration, so it is natural to make most
content readable by all users.2

3.3 Programming Language

Pages must be written in a programming language. The requirements for such
a “collaborative programming language” are a somewhat different than for con-
ventional single-user programming languages. Some desired language features
are

– Interpreted (or dynamically compiled) execution: We need the ability to com-
pile or interpret new source code at all times.

– Strong, dynamic typing : Strong data types within the language are essential,
so that it is possible for a routine to know the type of a value, and to ensure
safe execution. Although static variable types could work in principle, in this
environment the ease of use and flexibility of dynamic types may outweigh
the benefits of compile-time type correctness.

– A rich, extensible set of types: The set of possible data types can be large,
with a subtype relation and possibly other relations as well. It must be
possible to add new types at runtime.

1 The term “page” may be slightly misleading, since a page holds code or data, not a
Web page. We use this term simply to distinguish pages from variables or functions
in most programming languages, which are not necessarily persisted and do not hold
the same meta-data.

2 In principle, users could publish pages that are executable but not readable, but
this “closed source” approach removes opportunities for collaborative bug fixing and
individual customization.

249

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

– Safe code execution: The execution environment must provide security mech-
anisms that permit safe execution of untrusted code. It is necessary to run
pages within a sandbox that minimizes the likelihood that scripts will com-
promise the host system’s integrity (e.g., modifying system files), confiden-
tiality (e.g., exposing sensitive local data), or availability (e.g., consuming
excessive memory, processing, or bandwidth). The sandbox should also pro-
vide mechanisms that restrict abusive behavior that could adversely affect
remote systems (such as posting comment spam to open websites).

– Access control : While not essential in all applications, access control support
for data and code within the environment (such as user-based read, write,
and execute permissions on pages) is highly useful.

– Library support : Support for rich data structures and parsing tools to convert
ad hoc data formats to convenient internal representations, particularly for
ubiquitous formats such as HTML and XML.

– Ease of use: For collaboration to work on a large scale, the language must
be accessible to casual developers.

We know of no existing programming languages that fully meet all the above
needs, but several popular languages, including Ruby, Python, JavaScript, and
Lisp/Scheme, come close to meeting most of them. The least-supported language
feature, and arguably the greatest technical obstacle to building the execution
environment, is safe code execution. The Java platform is one of the few general-
purpose programming platforms that provides a mature and full-featured sand-
box model [10, 11], though this model still does not support resource restrictions,
such as CPU or network bandwidth limits. Ruby provides some sandboxing sup-
port, but it is not as expressive or mature. Probably the most widely used
execution sandbox is the JavaScript environment within most Web browsers.

3.4 Data Types

Types in a collaborative programming language form the glue that enables mul-
tiple functions to work together, extracting, aggregating, processing, and ren-
dering information. Values may have numerous types, such as numbers, strings,
lists, URLs, zip (US postal) codes, HTML Web pages, or street addresses. A type
(e.g., “movie listing”) has relationships with other data types, in particular sub-
type (e.g., “movie listing” is a kind of “event”) and containment (e.g., a “movie
listing” includes a time, duration, a movie, and a location of type “address”).

As users develop new pages that utilize new data types, they are effectively
adding to an ontology of possible data types. New data types can be created and
used in response to needs for particular services. For instance, an HTML page
with driving directions might contain a map, an address, an estimated distance,
and other information. Various services might extract useful data from such a
page. A service interested only in the map could create a data type for storing
the map image, while a distance-computing service would use (or create) only a
numeric type for distance.

250

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

3.5 Composing Services

Pages should be able to pass and return data values. Once content from the
Web is brought into the system as a known data type, it can be passed as an
argument to any other page that accepts that data type. New services can be
built by composing the functionality offered by multiple pages. For example:

– One user writes a page that uses an online directions service to compute
the distance and driving time between two zip codes. Another user writes a
custom page that accepts a single address and determines the driving time
from her house to that address.

– Several users write pages that query various online event-listing websites
for upcoming events. Although the websites present the data in different
formats, each page would extract information and return its result as an
“event” data type holding a title, description, date, and URL. Another page
is used to aggregate upcoming events at a particular location into a single
array of objects, and a final page can be used to render them in a table.

3.6 Rendering and Data Conversion

The execution environment requires support for display of all kinds of data
values. This is particularly helpful in keeping a clean separation between the
underlying representation of data values, and the various presentations of them
shown to the user. A simple technique is to build rendering functions that accept
a value of a particular type and convert it to a presentable form (such as a frag-
ment of HTML). These functions are simply pages themselves. For convenience,
types have default rendering functions. That is, when a value is returned for dis-
play to the user, the system checks the value’s type to determine an appropriate
rendering page. The rendering page is called with that value as its argument,
and the result of that call is now an immediately displayable value (for a Web
interface, HTML).3

This type of rendering can actually be considered a special kind of data
conversion: in effect, it is implicit type coercion in the programming environment.
Other simple, automatic conversions can be convenient, such as converting an
ISBN to a “book” object with author, title, and so on. Going further, it is possible
to imagine an extensible registry of data conversions, specifying which types can
be converted, the circumstances under which the conversion may occur, and
what page implements the conversion.

3.7 User Interface

Users can interact with the system in two ways: To issue “commands” that
dispatch existing services, and to build new services. The user interface for issuing
3 If a user-defined type does not have a default rendering function defined for it, a

generic object rendering function is chosen. Also, it can also be useful for a page
explicitly to select the rendering method for its return value.

251

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

commands simply collects a page name and an optional set of arguments. A
simple way to do this is to provide an actual command line, much like a shell
prompt. More graphical user interface widgets can provide similar capabilities
in a more polished form.

The programming interface is potentially more complex, and ideally is closer
in spirit to an integrated development environment. The simplest possible edit-
ing environment is inspired by wiki editing, and consists of a set of pages that
can be edited from within a Web browser. The benefits are simplicity and ease of
use. However, additional features can facilitate development of new pages. One
particularly useful feature is a read-eval-print loop for executing script expres-
sions. For instance, when trying to extract content from a Web page, the Web
page can be fetched and parsed, and then the user can interactively try evaluat-
ing various expressions to determine how to extract data of interest. Pages can
also be invoked interactively during the development process. Of course, as with
any development environment, more advanced graphical interfaces could offer
shortcuts for composing existing functions or pages.

3.8 Web Protocol Support

The framework can interoperate with other Web services only if it has library
support for relevant protocols. Structured formats such as RSS, SOAP, or Seman-
tic Web service protocols are useful, but support for common, human-browsable
(and in practice, non-standards compliant) HTML is also key, as this format is
still the dominant form for free information on the Internet. In particular, there
should be a parser and document representation (such as the W3C document
object model [12]) that allows “Web scraping” and general manipulation of XML
and HTML documents.

3.9 Architecture

We have mentioned all three key architectural elements of the framework: a
storage mechanism, an execution environment, and a front end. The simplest
deployment is to put all three parts on a single server. In this case, a Web-based
user interface can be provided by a Web application server, which hosts the
execution environment and the page storage. The thin clients are simply Web
browsers.

Other architectural arrangements may offer greater benefits. The only ele-
ment that must be shared, and hence is most easily kept on a centralized server,
is the storage component. Page execution and the user interface could be de-
ployed on a thicker client. This option may no longer offer a “zero install” client,
but has the advantages of greater scalability. Another critical factor in this choice
is risks of and incentives for abuse. Execution on the client removes incentives
for abusing server resources, but increases opportunities for malicious client-side
exploits.

252

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

// Fetch page, using localsearchmaps.com’s free geocoder

var P = GetURL("http://www.localsearchmaps.com/geo/?loc=" + Url_Encode(addr));

// Parse results, extracting the numbers (lat, long)

var LatLong = Pat(P, ‘([-\d.]*)‘);

if (Size(LatLong) > 2) then

[. long=LatLong[1][1], lat=LatLong[2][1], label=addr .]

else

nil

end;

Fig. 4. The source code for the geocode page, which accepts a parameter addr, passes
it to a free geocoder service, and then extracts the coordinates from the results.

4 WubHub Implementation

4.1 Features

We have built a simple prototype of the environment, the WubHub portal, and,
as shown in Sect. 2, it demonstrates most of the basic service editing capabilities
we have described. Some of the more advanced features we have described, such
as a rich type system or an extensible system for implicit data conversion, are
not yet fully supported.

Our prototype is built with and uses the WebL programming language [13],
a small scripting language for the Java platform that has built-in support for
fetching, manipulating, and creating Web content. WubHub supports a variety
of page types: WebL, HTML templates, plain text, URL redirects, and aliases.
WebL pages are simply functions, written in the WebL, that accept parameters
and return a value. (An example of a short WebL page is displayed in Fig. 4.)
The HTML type provides a convenient way to create regular Web pages, like in
a wiki, as well as a templating feature, to display results of WebL computations
with HTML formatting.

When a user invokes a command, the corresponding page is executed, and the
result is rendered and returned to the user. In the case of HTML templates, the
page, with appropriate substitutions, is returned. In the case of URL redirects,
an HTTP redirect, with appropriate substitutions, is sent to the browser. All
commands have a corresponding invocation URL, so commands such as search
results or data feeds can be bookmarked by users. For instance, if a command
returns data in RSS format, a user could direct an RSS reader to subscribe to
the URL of that command.

Pages are stored within a number of modules, including a global module, a
system module, and individual modules for each user. All pages are completely
public for viewing and execution, although a user may not modify pages in the
system module or in the module of another user.

4.2 Implementation

The WubHub implementation is quite simple; in fact, WubHub is largely written
using itself. Almost all basic features, such as page creation and page editing, are

253

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

themselves handled by pages. (To prevent accidental or malicious damage to site
functionality, these important pages may be edited only by site administrators.)
One advantage of choosing WebL is that it provides all needed parsing tools for
real-world, ill-formed HTML. It provides XML and HTML parsing, selection,
search, and creation capabilities as native parts of the language. Data is passed
between pages via native WebL types, which can represent HTML fragments,
strings, numbers, arrays, and objects. Objects are used to create new types, and
hold a set of named fields.

The execution sandbox consists of two layers. Because WebL is a very small
language, it is relatively straightforward to check for any commands that might
be abused, such as file-system operations. A second layer of protection is via a
standard Unix chroot() environment. We have not yet implemented any resource
constraints within the sandbox, so it is still possible to consume excessive CPU
or network bandwidth.4

4.3 Deployment and Use

WubHub is remarkably easy to use as a portal that provides simple services
rapidly. In many cases, it is faster and more efficient to use a command that
performs a Web query than to browse the original Web site. As a special case,
redirects to a URL do not provide any data extraction capabilities, but behave
more like a bookmarking or search service.

We have deployed the system for use by a small community of pilot users, who
have contributed a variety of simple commands. Examples range from assembling
search results from well-known news or search engines, to sending SMS messages,
to building statistical charts.

The current version of WubHub is a proof of concept only, and requires a
number of improvements for broad use. A key difficulty is ease of programming.
WebL is a somewhat arcane language, and is completely unfamiliar to most users.
Debugging support via the Web is fairly limited. The type system should also be
enhanced. Objects are essentially structures with named fields, without inheri-
tance, so implementing more complex types and relationships between types is
cumbersome. Finally, scalability and security, including resource throttling, are
further areas that will require more substantial development effort.

5 Discussion

5.1 Practical Issues

The use of hand-coded Web scraping tools instead of well-defined Web service
protocols raises an immediate concern: Because there is no defined service API,
4 One approach to enforcing such constraints is to build a supervisor thread that mon-

itors running threads and terminates those that exceed certain limits. In the mean-
time, to discourage abuse, we have employed an invitation system, where members
can join only via an invitation from an existing member.

254

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

the code for extracting information from an unstructured Web site could break
whenever the Web site changes the way it presents its information. On the other
hand, the community of users has an interest in correcting such problems, and
we should take care not to underestimate the strength of numbers.

Another issue is that some content providers legally restrict non-interactive
access to their content (for example, because they depend upon click-through
advertising revenue). We believe, however, that future Web applications will
trend toward “software-as-a-service” publishing of functionality, and that busi-
ness models are likely to arise that will encourage providers to participate in a
collaborative, Web-scale marketplace of services and content.

5.2 Type Systems and Ontologies

Exactly what sort of type system is best suited to this environment is not yet
clear. At one end of a spectrum, types and type checking could be quite simple;
for instance, the data types could consist only of primitive types, arrays, and
named records, and type checking would involve raising runtime exceptions when
invalid operations, such as accessing invalid fields, occur. At the other end, we can
imagine rich types with a great deal of semantics, and possibly reasoning support
as part of the type checking process. For instance, some services apply only to
data values that satisfy certain conditions – say, geographical locations within
North America – and these subtype conditions could be checked automatically,
either at development time or at runtime.

On a recent collaborative research and development project,5 the authors
approached this issue from the semantic side of the spectrum, employing OWL,
Jena, and a “semantic object” framework to model system data and services [14].
However, for the applications and community targeted by WubHub, we have
found it is an advantage to follow the philosophy of collaborative systems like
wikis, where there is strong emphasis on ease of use and a low barrier to users
correcting problems. A more relaxed approach to data typing can lead to se-
mantic imprecision and bugs, but this risk is counterbalanced by rapid, itera-
tive modeling and greater numbers of users identifying and correcting problems.
Loose typing practices such as “duck typing,” which has become popular among
Python and Ruby programmers [15, 16], are also useful, as they encourage ag-
gressive reuse of code.

5.3 Three Approaches to Semantic Annotation

One way to put the collaborative programming approach in context is to consider
some of the other approaches to semantic annotation of unstructured content. In
the traditional Semantic Web vision, information from all sources is transformed
from unstructured formats to standardized semantic representations. Unfortu-
nately, this vision has been relatively slow to take shape. A key impediment is
5 CALO (http://www.caloproject.sri.com) is a DARPA-funded project where SRI is

leading 25 subcontractors to construct a personal assistant that learns.

255

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

that interoperability typically depends on data providers converting or adapt-
ing their data to a new standard before it can be consumed by others – an
expensive process, and one for which there is often no strong incentive to be
an early adopter. Moreover, a standardization process is needed before potential
users gain enough confidence to adopt a new format. In particular, with this
approach, benefits are not immediate or incremental.

A second approach is to leverage the power of a community to collabora-
tively annotate content. Collaborative systems can solicit relatively small con-
tributions from many early adopters, and do incrementally increase in value as
more contributions are added. Note, however, that users must still do the work
of migrating content into a new format and repository before it is useful (such
as with del.icio.us).

But can we go one step further, supporting collaboration and also allowing ex-
isting data to remain in its existing formats and locations? This may be possible
by shifting our focus from collaboratively developed content to collaboratively
developed services. If collaborative infrastructure becomes powerful enough that
users can share annotation mechanisms, rather than just annotated data itself,
we can benefit from community collaboration to extract semantic information
from many existing, unmodified data sources. Because the construction of new
services is possible immediately, the framework provides an incentive to con-
tribute, which accelerates adoption.

6 Related Work

6.1 Programmable Websites

Executable code within a wiki is not a new idea; some existing wikis already sup-
port dynamic variables and other execution directives (e.g. ZWiki [17]).6 More
ambitious “programmable wikis” have been discussed [18], but none have become
mature or popular, mainly because of the difficulties of sandboxing (particularly
for legacy wiki systems, such as those based on PHP or Perl), and perhaps also
because of a lack of compelling example applications.

The inspiration for WubHub’s command-line interface comes from the collab-
orative website YubNub [19], which allows users to define and share commands
that redirect to other Web sites, particularly Web searches. However, it has no
general programming mechanism.

A few websites have recently begun to allow users to develop new Web ap-
plications through the Web. These include Ning, YouOS, and EyeOS [20–22].
However, most of these sites aim to replicate a traditional development style,
with a single developer (or perhaps a single team) producing a standard Web
or desktop-type application. As far as we know, our system may be the first to
encourage users to compose services from each other’s contributions, so that a
single service is actually the result of a community effort.
6 Of course, Web application tools such as JSP, PHP, or executable templates provide

another example of dynamic pages, but these pages are themselves rarely edited
collaboratively.

256

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

6.2 Widgets and Browser Tools

Several systems, such as Yahoo’s Konfabulator [23] and Google Widgets [24],
encourage a community of developers to create distributable functionality that
can be inserted into the user’s workspace. In contrast with WubHub pages, each
widget provides a standalone block of functionality tightly connected to graphical
output and cannot be composed to produce additional functionality.

Active browsing, such as implemented by the Greasemonkey [25] browser
plug-in, allows users to program their Web browsers to manipulate Web con-
tent. The purpose of scripts is usually to make specific adjustments to pages as
they are browsed, such as adding links to related content. These “user scripts”
can be shared via centralized websites [26], but currently there is little support
for fully extracting content from websites or for composing scripts to get new
functionality.

6.3 Semantic Web Services

Semantic Web services [27, 5] are the standard approach to providing services
on the Semantic Web, and some subsequent research has investigated ways to
involve users in semi-automated composition of services [28, 29]. There have been
a number of tool-building efforts related to the major Semantic Web services
initiatives. For example, the Protege-based OWL-S Editor [30] has facilities for
creating and composing OWL-S service descriptions, and provides a graphical
editor that supports service composition and allows discovery of relevant services
from local or remote service repositories. Maximilien et al. [31, 32] have discussed
orienting Semantic Web services around human activities, and argue that keeping
humans in the process of Semantic Web service automation is an important way
to encourage widespread adoption. Aspects of this argument are very similar to
the case we have made for involving users in the creation of new services.

6.4 Other Collaborative Environments

The Croquet system [33] is an effort at building a graphical collaboration system
architecture. It shares some key features with the environment we have described,
including the blending of user and development environments and a shared space
where users can interact with content and scripts. It differs in that it is a larger,
more ambitious system, with an emphasis on 3D visualizations, and it focuses
more on users and user interactions within the system, rather than interoperable
software and services and interaction with the Web.

While the setting is quite different, some similar collaborative programming
ideas have previously arisen in the context of multi-user online “MUD” games.
For instance, the MOO programming language [34] allows users to program
the MOO game server in an object-oriented way, adding rooms or objects with
scripted functionality. User-scripted functionality is also possible in some recent
online games, including Second Life [35].

257

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

7 Conclusions and Future Work

We have described a collaborative programming environment where users com-
pose and create new services that access nearly any type of existing online ser-
vices. A key strength of the environment is that members of the user community
can build upon each other’s work, assembling new services that provide new or
more customized features. As a part of this process, legacy content and services
are reshaped into a community-extensible set of known data types, effectively
adding semantic annotation to existing Web content.

The WubHub prototype has demonstrated that users can collaboratively
write and compose services by using such a framework. It also presents nu-
merous opportunities for integration with other applications, such as allowing
WubHub-supplied data to be integrated into desktop widgets via remote proce-
dure call. However, as we have discussed (Sect. 4.3), a variety of implementation
issues must be addressed before the system is ready for broad use.

The requirements and design we have outlined for the collaborative pro-
gramming environment leave much room for future work. As already mentioned
(Sect. 3.3), popular programming languages do not provide all the language
features desired for such environments, so there are opportunities for design-
ing language enhancements that make collaborative programming easier, more
powerful, and more practical. Key areas include enhanced security and permis-
sions management, and greater flexibility and semantic precision for data types.
The programming environment also needs more modular software development
support, user interface enhancements, such as graphically specified compositions,
and more powerful debugging tools, such as automated testing and perhaps type
inference or static analysis. Such enhancements present both technical and social
challenges: In addition to solving knowledge representation and software engi-
neering issues, they must also encourage productive community effort. If both
aspects are addressed, the result may be a significant step toward functional and
ubiquitous online services.

8 Acknowledgments

We wish to thank Jonathan Cheyer for his help with deployment, David Martin
and Natarajan Shankar for their comments, and the WubHub users who have
contributed ideas and their own new services, including John Bear and Andreas
von Hessling.

References

1. (Wikipedia) http://www.wikipedia.org.
2. (Flickr) http://www.flickr.com.
3. (del.icio.us) http://del.icio.us.
4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American

(5) (2001) 34–43

258

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

5. Martin, D., McIlraith, S.: Bringing semantics to web services. IEEE Intelligent
Systems (2003) 90–93

6. (Microformats) http://www.microformats.org.
7. (Semantic MediaWiki) http://meta.wikimedia.org/wiki/Semantic MediaWiki.
8. (Platypus Wiki) http://platypuswiki.sourceforge.net.
9. (IkeWiki) http://ikewiki.salzburgresearch.at.

10. Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.: Going beyond the sand-
box. In: USENIX Symposium on Internet Technologies and Systems, Monterey,
CA (1997) 103–112

11. Gong, L., Schemers, R.: Implementing protection domains in the Java Development
Kit 1.2. In: Internet Society Symposium on Network and Distributed System
Security, San Diego, CA (1998) 125–134

12. W3C: Document Object Model (DOM) level 1 specification (1998)
http://www.w3.org/TR/REC-DOM-Level-1/.

13. Marais, H.: Compaq’s Web Language: A programming language for the Web
(1999) http://www.hpl.hp.com/downloads/crl/webl/library.html.

14. Cheyer, A., Park, J., Giuli, R.: IRIS: Integrate. Relate. Infer. Share. In Decker, S.,
Park, J., Quan, D., Sauermann, L., eds.: Proc. of Semantic Desktop Workshop at
the ISWC, Galway, Ireland. Volume 175. (2005)

15. van Rossum, G.: Python tutorial. (2005) http://docs.python.org/tut/tut.html.
16. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby: The Pragmatic Program-

mer’s Guide. Pragmatic Programmers (2004)
17. (ZWiki) http://www.zwiki.org.
18. (Meatball wiki’s discussion of programmable wikis) http://usemod.com/cgi-bin/

mb.pl?CommunityProgrammableWiki.
19. (YubNub) http://www.yubnub.org.
20. (Ning) http://www.ning.com.
21. (YouOS) http://www.youos.com.
22. (EyeOS) http://www.eyeos.com.
23. (Konfabulator) http://widgets.yahoo.com.
24. (Google Widgets) http://www.google.com/ig/directory.
25. (Greasemonkey) http://greasemonkey.mozdev.org.
26. (UserScripts) http://www.userscripts.org.
27. McIlraith, S., Son, T., Zeng, H.: Semantic web services. IEEE Intelligent Systems

(Special Issue on the Semantic Web, March/April) (2001)
28. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of web services using

semantic descriptions. In: Workshop on Web Services: Modeling, Architecture and
Infrastructure, in conjunction with ICEIS2003. (2002)

29. Sirin, E., Parsia, B., Hendler, J.: Composition-driven filtering and selection of
semantic web services (2004)

30. Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S., Senanyake,
R.: The OWL-S editor: A development tool for Semantic Web services. (2005)
78–92

31. Maximilien, E.M., Cozzi, A., Moran, T.P.: Semantic web services for activity-based
computing. In: Proceedings of 3rd International Conference on Service-Oriented
Computing (ICSOC 2005), Amsterdam, The Netherlands (2005)

32. Maximilien, E.M.: Semantic web services for human activities (2005) To appear.
33. Smith, D.A., Kay, A., Raab, A., Reed, D.P.: Croquet: A collaboration system archi-

tecture (2003) http://www.opencroquet.org/About Croquet/whitepapers.html.
34. Curtis, P.: LambdaMOO programmer’s manual (1997) ftp://ftp.research.att.com/

dist/eostrom/MOO/html/ProgrammersManual toc.html.
35. (Second Life) http://secondlife.com.

259

Proceedings of the First Workshop on Semantic Wikis - From Wiki to Semantics [SemWiki2006] - at the ESWC 2006

	Preface
	Contents
	Program
	Contributions

