
Conceptual Data Structures (CDS)

Towards an Ontology for Semi-Formal
Articulation of Personal Knowledge

Max Völkel, Heiko Haller

FZI, University of Karlsruhe, Germany
{max.voelkel, heiko.haller}@fzi.de,

http://www.fzi.de

Abstract. In an attempt to create a lean vocabulary for incremental
recording and step-wise formalisation of personal knowledge, we iden-
tified a set of common knowledge structures. These Conceptual Data
Structures (CDS) were found to be inherent to a variety of different
knowledge artefacts ranging from vague paper notes to highly structured
documents. CDS is suitable for representing knowledge in various degrees
of formalisation a uniform fashion, allowing gradual migration.
CDS serves two purposes: First, as a guideline for future Personal Knowl-
edge Management (PKM) tools, providing a set of crucial structural
primitives. Second, the RDF-based representation of CDS can serve as
a knowledge exchange format. It is capable of representing also vague or
even inconsistent knowledge structures between people and PKM tools
without unnecessary loss of information.

1 Introduction

Motivation. There is a wealth of methods and tools that facilitate our every-day
Personal Knowledge Management (PKM). They range from hand-written paper
notes to personal semantic wikis and from mere text processing or spreadsheet
applications over special outlining tools to nice and colourful graphical mind-
mapping applications. They all have one thing in common: They help the user
externalise knowledge in a more or less structured way.

According to Nonaka and Takeuchi [1], externalisation is the articulation
of tacit knowledge, that resides in a someone’s mind and is often only vague,
into explicit knowledge that can be communicated. The act of externalisation is
one of the four conversions in their widespread model of the knowledge creating
process, and it is the step that must come before any piece of knowledge can be
externally stored or even logically processed.

Although explicit, externalised knowledge still varies largely in its degree
of formalisation. It can be anything between a loose collection of keywords, a
weakly structured text, an informal graph or hypertext up to highly structured
knowledge representations and fully formalised ones like an ontology.

Highly structured and formalised information sources are easier to search
and process [2] and allow for semantic processing, but require higher efforts

http://www.fzi.de


to be created in the first place. For many uses however, a weak structure is
sufficient (E. g.: “This issue needs to be solved before that one.” or “These topics
are somehow related to those.”)

Our guiding use case is document creation. Culturally, documents (letters,
emails, scientific articles, newspapers) are an established form for communicat-
ing knowledge. A document 1 “... is usually intended to communicate or store
collections of data”. In practice, few documents are written directly in a text edi-
tor in a linear one-pass fashion. Instead, different tools are employed for different
degrees and kinds of structures (e. g. note about the idea, outline, argumentative
structure, reference data base, pieces of text from another document).

For each range of formalisation, different tools are suitable. But since no
single tool is optimal for all stages, external knowledge—especially while being
articulated and formalised—often goes a long way, traversing different media and
tools while subsequently gaining its final structure. As most tools do not share
a common interchange language, contents need to be rewritten or restructured
several times during this process. E. g.: New knowledge might come to life during
a brainstorming session where it is recorded in keywords and roughly structured
on a Mind-Map. Then maybe a report is written according to this map, taking
into account other personal notes. Finally, a formatted text is created. A reader
is left with linear order and some parts of the hierarchy and has to mentally
re-create the inner structure of the document. Exporting a structured data set
to another tool often has the same effect: The text is still there, but all (or most)
structure is lost and needs to be articulated again every time it is transferred to
another tool.

Idea. We have observed, which structures people use in different tools and use
cases and found out, that a small set of relations is very common across many
kinds of knowledge artefacts. We believe, that the set of“Conceptual Data Struc-
tures” (CDS) presented in this paper can

– act as a formalism for recording, managing, and sharing personal knowledge,
– bridge the rather appreciable gap between “no semantics” and “fully formal

semantics” in PKM,
– serve as the least common denominator for knowledge exchange between

different humans and different tools, and
– encode pre-verbal knowledge (e. g. “this is nested within that, but I can’t say

why”).

It is our goal, that PKM tools should be able to also capture vague semantics
in a way that can be of use and that can be communicated without unnecessary
loss of meaning between tools, but more important, between humans.

CDS allows users to build up huge personal “knowledge bases”, consisting of
text snippets and references, structured in varying degrees of formality.

1 http://en.wikipedia.org/wiki/Document

http://en.wikipedia.org/wiki/Document


CDS offers by its design three parallel ways to work with personal knowledge:

keyword search for item retrieval, using structural and formal knowledge only
for ranking,

structure for retrieval by associative browsing as well for composing documents
from existing items, and

semantics for reasoning or e. g. stating argumentative structures.

Outline In this paper, we present our design and sources of inspiration (Sec.
3), the CDS vocabulary (Sec. 3.2, usage scenarios (Sec. 4), an implementation
(Sec.5) and compare it with related work (Sec. 7).

2 Analysis

CDS was not created with any mathematical or philosophical goals in mind.
Instead, existing user interfaces, file formats and ways of structuring knowledge
have been examined. CDS is a pragmatic approach, based on structures common
to a large variety of contexts and document formats—among others the following:

Text Documents: Text documents have a linear structure. In fact, this linear
structure seems to be the most basic structuring primitive used. The first
conceptual relation type of CDS is order.
Most documents however carry more structure than only sequentially ordered
sentences; they are often structured into headlines, chapters, enumerated or
bulleted lists. All these structures are hierarchical relations between text
fragments. The second relation type of CDS is hierarchy.

Paper Notes: Typical note structures on paper are e.g. to-do-lists (sequential),
outlines (hierarchical) or less structured item collections. Often, certain items
are emphasized or highlighted.

Hypertext: An ubiquitous document format of our time is (X)HTML, which
adds hyper-links to the document tree model. A formalisation of these three
axes, order, hierarchy and linking is equivalent to the XML document struc-
ture. Directed links are another relation type of CDS.

File Systems: All popular file systems use a hierarchy as their basic ordering
structure. Most file systems also allow links (shortcuts in Windows-, symbolic
and hard links in Unix file systems.)

Folksonomies: Many web sites allow users to tag their content. Delicious2 as-
signs single-term keywords to bookmarks, flickr3 labels digital images. Both
systems allow users to browse the implicitly created sets of items which share
a common tag. “Annotation” is a CDS relation that also allows tagging.

2 http://del.icio.us
3 http://www.flickr.com

http://del.icio.us
http://www.flickr.com


3 Design

In this section we present entities and a set of relations between them.
CDS models knowledge at the granularity of text snippets (“items”). We

expect the typical item text length to range from a single word up to a paragraph
of a few sentences. Longer texts will usually be represented as a collection of
related items. CDS allows a user to explicitly state knowledge more subtle Than
e. g.: “this is a totally ordered list” or “this is a set without any order)”. Instead
it allows pair wise ordering: a user can state which other items are “before” or
“after”.

3.1 CDS Data Model

At its core, CDS has a very simple data model. It consists of:

Address: Items as well as relations between items (i. e. instances of relations)
have a globally unique address string. Note that this different from e. g. RDF
[3], where only items are addressable.

Item: the smallest addressable unit of information.
Item Text: Items typically carry text. Text can be as short as a label or as

long as a paragraph.
Item Type: CDS defines the types Relation, Background and URL. Items of

type URL are considered web resources, and can be de-referenced with the
HTTP protocol. The type system is extensible—other types can be defined.
An item can also have multiple types or no type at all, which is the default
case.

Relation Type: CDS comes with a set of built-in in relation types, placed
in an inheritance hierarchy. This allows a tool, which does not know how to
handle a specific relation type, to fall back to a higher level, using less formal
semantics. This is probably the greatest achievement of CDS.

Relation Instances: The intelligence of a CDS model lies in the relations.
Relations instances are also items. Each relation instance can go from a
number of items to another set of items. Each relation can also have a number
of relation types. Details about relation types can be found in the next
section.

CDS Model: A set of items, relations and contexts.

Knowledge Exchange. In order to exchange items with other people or tools,
we use a concept inspired by Published Subject Identifiers from Topic Maps[4].
In CDS, each item may store a number of “merge-with” addresses, representing
alternate addresses of the item, that it has been merged with. Retaining these
alternate addresses is needed to avoid duplicates when previously merged items
are imported again or when a new CDS Model is imported referring to the old
addresses.



3.2 CDS Vocabulary

The main part of CDS is comprised of a set of relation types, modelled after the
empirical studies of current common data structures to model personal knowl-
edge. We are confident that a small number of relations can be sufficient for
modeling personal notes. Some findings even suggest that eight relations types
suffice in most cases[5]. We found the following types (c. f. Fig. 1), including the
non-typed relation. :

Undirected Relation: 
related/related

Directed Linking: 
link/backlink

Relation-hierarchy

Relation Type
relation/inverse

Labelled Links:
…/…-inverse

Order: 
before/after

Hierarchy: 
detail/context

Instantiation: 
instance-of/has-instance

Tagging: 
tagged-with/tag-of

Subclassing: 
is-a/superclass-of

informal

formal

Background: 
background-of/
background

Equivalency: 
equivalent

Legend

Annotation: 
annotated-with/
annotation-of

Fig. 1. Inheritance hierarchy of relations

Detail/Context: These two mutually inverse, transitive terms create a hier-
archy of items. This hierarchical relation is especially useful for approaches
using Levels-Of-Detail (LOD)[6], e. g. like simply collapsing/expanding an
item or so-called semantic zooming, where details of an item become visible
only when there is enough space to show them.

Order: To enable (partial) order between nodes, we introduce the mutually
inverse terms before and after. Before and after are transitive. They can
be used to record any order, be it timely, causal or in degrees of importance.

Directed Links: Web pages and scientific documents often have links between
the different content trees. CDS offers link and the inverse property back-
link to create hyperlinks between nodes.

Annotation: An annotation is a simple way of adding a comment to any item.
Annotations are frequently used in many tools and contexts ranging from



highlighting text passages in a newspaper or sticking post-its to your door
to adding text passages to branches of a mind-map or using the comment-
function in a text-processor. CDS uses annotated-with and the inverse
annotation-of.

Tagging: A way of annotating that has become quite popular recently is tag-
ging, a tag being formed simply by a short annotation, typically only one
word. Tagging creates labelled sets which imply no further information. Tag-
ging is not transitive, which distinguishes it from typing. Tagging is consid-
ered the simplest form of assigning meta-data to items. CDS uses tagged-
with and the inverse tag-of.

Typing: Typing (or: instantiating a type) of items is a common concept and
can be seen as a more formal way of tagging. It is also sometimes referred-to
as semantic annotation. Types are often structured in hierarchies and higher
types are inherited (type hierarchies are transitive). In CDS the type of a
node is stated with instance-of and has the inverse relation has-instance.
Types—like anything—are represented by items. Note that the type sys-
tem is part of the knowledge structure. Type inheritance is modelled with
Subclassing, offering the relations is-a and its inverse superclass-of.
Typing and annotation (tagging) are similar in nature. However, in practice
they often serve different purposes: Types dictate how items are processed
or rendered while tags help more in finding and grouping items. Typically,
items have one or few types and many tags. In CDS, typing an item implies
tagging it with the label of the type.

Equivalency: A user may state that two items are equivalent. This retains the
individual item identity, but searches will treat the two (or more) items as
being a single item, having the union of linked items. The benefit of relating
items with equivalency instead of merging them, is maintenance: Later, the
very same items might be split again. E. g.: A person who is currently, but
not forever, my boss. It does not make sense to merge these two items, as
this would blur the distinction between these two roles.

Background: Additionally, each item, especially each relation instance can be-
long to one or more backgrounds. This is stated by a relation typed “back-
ground”pointing to any item representing some kind of context. Among other
things, this allows to nest backgrounds. Backgrounds are used to record the
creator of items and relation as well as the time, when such data has been
stated. This information can later be exploited e. g. in ranking a search result.

3.3 CDS with Pen and Paper

As CDS is intended to model private notes, we believe it makes sense to have
a graphical notation. Destilling from our own experiences with taking notes on
paper and building upon existing notations for personal note taking 4, we came
up with the notation depicted in Fig. 2. This is just a first attempt. Ideally, this
proposal would eventually evolve into a Personal Modeling Language.

4 http://www.rzuser.uni-heidelberg.de/~x28/anke/text/

http://www.rzuser.uni-heidelberg.de/~x28/anke/text/


Undirected Relation

Directed Linking

notation

Labelled Links

Ordering

Hierarchy

Annotation 

or

(never straight)

label
also hierarchical

Subclassing

Instantiation item text

item text

or

Fig. 2. A graphical pen and paper notation for CDS

Paper

Sowa:2000

Conceptual Graphs

Cats

Sowa:2000

Paper

Conceptual Graphs

instance-of

detail

related

Cats

Using-cds

Graphical Notation Data Model Representation

Fig. 3. An example showing the use of the CDS graphical notation (left) and
data model (right)



To give a better understanding, how CDS and its graphical notation can be
used, we describe the paper ‘Sowa:2000’ belonging to the field of Conceptual
Graphs and being somehow related to cats(c. f. 3). In CDS, we encode this using
four items: Sowa:2000 (a), paper (b), Conceptual Graphs (c), and cats (d). We
could state these relations: a instance-of b, b context c, and b related d.

3.4 Extending CDS

CDS by itself is not very expressive. We expect most users to extend it to suit
their needs, by creating new relation types in addition to the pre-defined ones.
This is achieved by linking a relation to an item representing a type. Any item
can act as a type. New relation types should inherit from existing ones, allowing
tools to fall back on their semantics, if the new type cannot be understood.
E. g. metAtAConference could imply knows, which in turn might be layered on
relation.

Undirected Relation

Directed Linking

extending

Labelled LinksOrder Hierarchy

Tagging

Annotation Subclassing
Composition: 
part-of/has-part

Time: 
later/earlier

knows

Met-at-conference

summary-of/
summarized-by

Highlighting:
Tag with name „Highlight“ Instantiation

Fig. 4. Extending CDS

Existing ontologies can be used in CDS. However, they should be aligned to
the CDS core relations, in order to get the advantages outlined in Sec. 1. An
exemplary layering is shown in Fig. 4. Some possible extensions to CDS are:

Vague Knowledge: In order to record vague knowledge as well, CDS could
state the degree of each relation as a numeric floating point value between
0 and 1. By default, a degree of 1 (100%) would be assumed. On paper, this
could map to thicker or thinner lines. Technically, a new “degree” relation
would attach items to relation instances. The attached items would than
carry the numeric value.

Queries: To fully exploit the structured knowledge represented in CDS, a query
language is needed. We believe that SPARQL [7] is a suitable language for



that. The formal semantics of the CDS type system would however still need
to be clarified.

Aliases: In textual environments, items might need one or more identifying
keywords, much like a WikiWord [8]. Such aliases should be stored in CDS
as well and could so to be shared with others.

4 Using CDS

In practice, at least the novice user is not meant to be bothered with explic-
itly stating CDS relations. CDS should be stated by the PKM tool, wherever
it identifies such underlying structures. E. g. Mind-Maps or outlines imply con-
text/detail relationships and orders.

The process of writing a document, as we have it in mind, could be like this:
Text snippets are created and structured in a textual interface (like a Semantic
Wiki5). The structuring could take place by simple wiki syntax (e. g. for nested
lists etc.) and a semantically enriched link syntax[9], to explicitly state CDS
and other typed relations where desired by the advanced user. But even without
these, simple document structures imply many structural decisions: E. g. order
and hierarchy of each single line of text have been assigned. As a next step, the
CDS data could be refactored and refined in a graphical user interface.

Because it is possible to state local order relations between items, there is
no need to overlook the global structure of the document in every phase of its
creation. Of course this can produce intransitivities (circles) or other inconsis-
tencies. This is a feature, not a bug: Unfinished, and inconsistent structures can
be stated as they occur in transient stages, and shared between tools or people
for further refinement. Such inconsistencies could be detected by a good tool and
finally resolved by the user.

In our example, a final total order could be determined, (stored by assigning a
complete chain of before/after-relations that have a common background item).
This background item now defines the structure of the final document, which
could now be exported as a stand-alone document or shared as a CDS Model,
thereby preserving all the additional fine-grained structure. Ideally there should
be new stand-alone (e. g. xhtml-based) document formats, which are highly struc-
tured on more fine-grained levels. They could be interactively browsed by the
reader rather than linearly read. A first step into this direction is the ABCDE-
Format6.

A good PKM tool should allow the user to start with completely informal
text structures and refine his knowledge base by-and-by, adding more specific
relation- and item types. In the end, parts of the personal knowledge base could
be as formal as an ontology.



5 Implementation

CDS is currently implemented as an RDF Schema using some OWL fragments.
We sketch the implementation only briefly, the complete RDF Schema can be
downloaded from http://xam.de/2006/01-cds. Embedding CDS in RDF al-
lows an easy route to transform vague knowledge step-by-step into hard factual
knowledge. RDF is well known for its ability to encode complex, formal knowl-
edge structures. The CDS vocabulary can model vague knowledge as well.

Items are instances of the class cds:Item. The textual value is assigned with
rdf:value. Different from RDF, CDS needs to address relation instances as
well. We thus model all relation instances as relations of the class cds:Relation,
following pattern 2 from [10]. Each instance of a relation has a number of source
items, target items and items representing the types of a relation. We now give
an illustrative example for encoding CDS information (as stated in Fig. 3) in
RDF, which is depicted in Fig. 5.

6 Evaluation

In this section we evaluate the ability of CDS to model basic structures of existing
PKM tools. We conclude this section by listing current shortcomings.

Use Case: Wikis How typical structures occurring in a wiki (links, backlinks,
hierarchies from headings and nested lists etc.) can be dealt with, has allready
been described in Sec. 4.

Use Case: Mind-Maps [11] As mentioned above, the basic hierarchical structure
of mind-maps corresponds directly to CDS’ context/detail relation. The sequen-
tial order of branches can be described by before/after. Cross-links in mind-maps
can be expressed by directed links—labelled or not.

Use Case: Concept Maps [12] Concept maps are graphs without formal seman-
tics, simply using labelled nodes and labelled directed links. The mapping to
CDS is obvious.
5 http://en.wikipedia.org/wiki/Semantic_Wiki
6 http://wiki.ontoworld.org/index.php/ABCDEF

a cds:label ”x”. f cds:from c.
b cds:label ”paper”. f cds:to a.
c cds:label ”Conceptual Graphs”. f cds:instance-of cds:detail.
d cds:label ”cats”. g cds:from a.
e cds:from a. g cds:to d.
e cds:to b. g cds:instance-of cds:rel-relation.
e cds:instance-of cds:rel-type.

Example in N3 notation. a-g are URIs.

Fig. 5. Mapping CDS to RDF

http://xam.de/2006/01-cds
http://en.wikipedia.org/wiki/Semantic_Wiki
http://wiki.ontoworld.org/index.php/ABCDEF


Use Case: TheBrain 7 TheBrain is a PKM tool known for its nice and fluent
visualisation of local graph structures. It uses two relation types: hierarchy and
undirected links. Unlike many other graph-based tools, it allows to model circular
intransitivities with the hierarchy relation. As we know, all of this is easily done
in CDS.

Use Case: Notes on Paper According to a methodology of Matthias Melcher 8,
there are a number of fundamental relations for personal knowledge items. We
explain how they are expressed in CDS.

Part-whole can be seen as a refinements of context/detail.
Tags and taxonomies map to CDS’ ability to use tags and types.
Order, either causal or in time both maps to before/after.
Synonyms can be stated with “equivalent”.
Cross-Links are modelled with CDS’ general relation.
Antonyms have currently no built-in way to be expressed in CDS. Maybe the

ad-hoc introduction of a new directed relation would be the best option.
Marking items is offered by tags.
Citations and references map nicely to hyperlinks.

6.1 Shortcomings of CDS

Tables are not natively handled in CDS. Simple tables often represent a list of
objects with a list of attributes each, which could be modelled that way. However
handling the semantics of tables generically is not trivial [13]. Especially the
handling of nested tables is currently unclear.

Numeric knowledge or even charts are currently out of scope.

7 Related Work

In this section, we briefly review existing knowledge representation languages
and vocabularies.

RDF is rather technical and not ideally suited for direct conceptual modeling.
RDF focuses on merging models, where items having the same URI are
considered equal. In order to use RDF in a scenario, some kind of vocabulary
or ontology is needed, CDS tries to be this generic PKM vocabulary.

OWL can be considered in the context of this papers as a mighty type system.
OWL does not directly allow to use as unprecise relations as more general
than. However, expressing CDS in OWL seems possible and will be consid-
ered in future versions.

7 http://www.thebrain.com/
8 http://www.rzuser.uni-heidelberg.de/~x28/en/102.htm

http://www.thebrain.com/
http://www.rzuser.uni-heidelberg.de/~x28/en/102.htm


Topic Maps [4] tackle mostly the problem of creating digital indexes over
heterogenous items (physical items, physical information resources, online
items, online information resources). There are no predefined relations be-
tween items on a semantic level. However, some topic map based tools define
foundational relations: DeepaMehta [14] e. g. mostly relies on UML relations.

Conceptual Graphs (CG) [15] are a generic tool to record formal knowledge.
They have a human-readable graphical notation and a formal interpretation.
Like RDF, Topic Maps or OWL, they are completely generic, leaving the user
with much freedom. Note that CG are more elaborate about context handling
than RDF and OWL. The expressivity of CG is roughly comparable to RDF,
but RDF has the greater tool support.

PIMO [16] the Personal Information Management Ontology, is quite similar to
CDS. CDS, however, is unique in its richness of predefined relations for struc-
turing personal knowledge. PIMO and CDS both emphasise the importance
of inverse relations.

IBIS stands for Issue Based Information Systems and stems from the back-
ground of supporting political decision processes [17]. The central concepts
in IBIS are question, idea, and pro and contra arguments. An RDF vocab-
ulary for IBIS has been published 9. IBIS is structuring thoughts only as
items of a discussion, not in the general sense. A graphical tool for using
IBIS, gIBIS, has been described in [18].

SKOS is the Simple Knowledge Organisation System. The goal is described as
“providing a simple yet powerful framework for expressing knowledge organ-
isation systems in a machine-understandable way.”10 It has been developed
to express shared, multi-viewpoint, multi-lingual concept hierarchies. SKOS
shares some concepts with CDS, but is more technical. CDS is simpler and
can describe knowledge more fine-granular than SKOS. E. g. in SKOS one
does not define partial order in a set; a set is either ordered (OrderedCollec-
tion) or not (Collection). SKOS has means for different kinds of labels and
notes for a concept, where CDS allows only one string per concept. CDS
is intended for personal usage. The CDS implementation contains SKOS
mappings, as far as possible.

Existing knowledge representation languages are very general (RDF, RDFS,
Topic Maps, OWL, CG) and come with few semantic relations to capture and
structure personal knowledge. They require a quite technical mindset, e. g. ex-
pressing all relations as binary relations (RDF, OWL) and thinking about the
distinction between literals, blank nodes and URIs. Existing vocabularies and
ontologies (SKOS, IBIS) are too domain-specific to model arbitrary personal
knowledge.

CDS should be easier to use than e. g. RDF or Topic Maps, as it offers a
basic set of structuring primitives and thereby guides the user.

9 http://dannyayers.com/xmlns/ibis/
10 http://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20050510/

http://dannyayers.com/xmlns/ibis/
http://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20050510/


8 Conclusions and Outlook

CDS serves two purposes. First, it acts as a guideline for Personal Knowledge
Management (PKM) tools. Each tool should be able to create, represent and ma-
nipulate at least the concepts defined in CDS. Second, the RDF-based mapping
of CDS can serve as an exchange format between PKM tools of all kinds.

We plan to integrate CDS support into a visual mapping tools (iMapping11)
and a semantic wiki. An alignment with existing ontologies and user studies are
planned.

Acknowledgments: Research reported in this paper has been partially financed
by the EU in the IST-2003-507482 project Knowledge Web (see 12), SEKT
under contract IST-2003-506826 and NEPOMUK (IST 027705). Many thanks
to Benjamin Heitmann, Felix Kugel, Matthias Melcher, Pär Lannerö, Kristina
Groth, Jörg Richter, Moritz Stefaner, Thomas Herr, Ingo Frost, Jens Wissmann,
Karsten Trint, Daniela Kalb, and Abiba Saibou for having never ending discus-
sions with us.

References

1. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company : How Japanese
Companies Create the Dynamics of Innovation. Oxford University Press (1995)
Cited in Sec. 1.

2. Staab, S., Studer, R.: Handbook on Ontologies (International Handbooks on In-
formation Systems). Springer (2004) Cited in Sec. 1.

3. Hayes, P.: Rdf semantics. Recommendation, W3C (2004) Cited in Sec. 3.1.

4. Durusau, P., Newcomb, S.: Topic maps reference model. Iso committee draft, ISO
13250: Topic Maps (2005) Cited in Sec. 3.1 and 7.

5. O’Donnell, A.M., Dansereau, D.F., Hall, R.H.: Knowledge maps as scaffolds for
cognitive processing. Educational Psychology Review 14 (2002) 71–86 Cited in
Sec. 3.2.

6. Furnas, G.W.: Generalized fisheye views. In: Human Factors in Computing Systems
CHI ’86. (1986) 16–23 Cited in Sec. 3.2.

7. Prud’Hommeaux, E., Seaborne, A.: Sparql. W3C TR working draft (2005) Cited
in Sec. 3.4.

8. Leuf, B., Cunningham, W.: The wiki way: Quick collaboration on the web.
Addison-Wesley (2001) Cited in Sec. 3.4.

9. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic wikipedia.
In: Proceedings of the 15th international conference on World Wide Web, WWW
2006, Edinburgh, Scotland, May 23-26, 2006. (2006) Cited in Sec. 4.

10. Noy, N., Rector, A.: Defining n-ary relations on the semantic web: Use with indi-
viduals. Technical report, W3C Working Draft (2004) Cited in Sec. 5.

11. Buzan, T., Buzan, B.: The Mind Map Book: Radiant Thinking - Major Evolution
in Human Thought. BBC Active (2003) Cited in Sec. 6.

11 http://wiki.ontoworld.org/wiki/iMapping
12 http://knowledgeweb.semanticweb.org

http://wiki.ontoworld.org/wiki/iMapping
http://knowledgeweb.semanticweb.org


12. Novak, J.D., Gowin, D.B.: Learning how to learn. Cambridge University Press,
New York (1984) For a crisp overview on “The Theory Underlying Concept Maps
and How To Construct Them”by J.D. Novak, see http://cmap.coginst.uwf.edu/
info/. Cited in Sec. 6.

13. Pivk, A., Cimiano, P., Sure, Y.: From tables to frames. Elsevier’s Journal of Web
Semantics: Science, Services and Agents on the World Wide Web 3 (2005) 132–146
Selected Papers from the International Semantic Web Conference (ISWC) 2004,
Hiroshima, Japan, 07-11 November 2004. Cited in Sec. 6.1.

14. Richter, J., Völkel, M., Haller, H.: Deepamehta - a semantic desktop. In Decker, S.,
Park, J., Quan, D., Sauermann, L., eds.: Proceedings of the 1st Workshop on The
Semantic Desktop. 4th International Semantic Web Conference (Galway, Ireland).
(2005) Cited in Sec. 7.

15. Sowa, J.F.: Conceptual graphs for a data base interface. IBM Journal of Research
and Development 20 (1976) 336–357 Cited in Sec. 7.

16. Sauermann, L.: PIMO-a PIM ontology for the semantic desktop. Technical report,
DFKI GmbH, Kaiserslautern (2006) 15.2.2006 version, draft. Cited in Sec. 7.

17. Kunz, W., Rittel, H.W.J.: Issues as elements of information systems. Technical
report wp-131, University of California, Berkeley (1970) Cited in Sec. 7.

18. Conklin, J., Selvin, A., Shum, S.B., Sierhuis, M.: Facilitated hypertext for collective
sensemaking: 15 years on from gIBIS. In: 8th International Working Conference
on the Language-Action Perspective on Communication Modelling (LAP 2003).
(2003) Cited in Sec. 7.

http://cmap.coginst.uwf.edu/info/
http://cmap.coginst.uwf.edu/info/

	Conceptual Data Structures (CDS)
	Max Völkel, Heiko Haller (FZI Karlsruhe)

