
Evaluating the Xydra Framework for
Social Web Applications

Diploma Thesis of

Thomas Lichtenstein

At the Faculty of Economics and Business Engineering
Institute of Applied Informatics

and Formal Description Methods (AIFB)

Reviewer: Prof. Dr. Rudi Studer
Advisor: Dr. Max Völkel

Duration: January 31, 2012 – July 31, 2012

Submission date: July 31, 2012

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, July 31, 2012

. .
(Thomas Lichtenstein)

Contents

1 Introduction 7

2 Background 9
2.1 Social web applications . 9
2.2 Xydra . 10
2.3 Replication . 14
2.4 HTML5 Web Storage . 15
2.5 Google App Engine . 15
2.6 Google Web Toolkit . 16

3 Requirements 17

4 Analysis 23
4.1 Traditional web application . 23
4.2 Cloud service provider comparison . 27

5 Design of social web applications with Xydra 31
5.1 Running example: Collaborative to-do list application 31
5.2 Architecture overview . 32
5.3 Application structure on the client . 33

5.3.1 Persistence layer . 34
5.3.2 Application layer . 35
5.3.3 Presentation layer . 36

5.4 Application structure on the server . 39
5.4.1 Application layer . 39
5.4.2 Persistence layer . 40

5.5 Remote method invocation and synchronization 40
5.6 Interaction control flow . 41

6 Implementation 45
6.1 Blueprint for SWAX applications . 45
6.2 Prototypes . 47

6.2.1 One-way synchronization . 47
6.2.2 Two-way synchronization with Swaxodo 48

5

6 Contents

7 Evaluation and Related Work 51
7.1 Comparison with requirements . 51
7.2 Cost estimations . 55

7.2.1 One-way synchronization . 55
7.2.2 Swaxodo . 56
7.2.3 Example scenario and costs . 57
7.2.4 Summary . 61

7.3 Comparison with other frameworks . 61
7.4 Summary . 67

8 Conclusion and Outlook 69
8.1 Summary . 69
8.2 Conclusion . 69
8.3 Future work . 70

Bibliography 71

List of Figures 73

List of Tables 75

1 Introduction
Problem statement. General availability of computing devices, the Internet and the Web
has enabled users to communicate by email, instant messaging, and other applications. In
recent years, in particular social web applications have become very popular, which - as
the name suggests - focus on social features. Social web applications typically allow the
formation of communities in which users can befriend and message each other as well as
collaboratively edit content.
A single application can have thousands or even millions of simultaneous users. The

huge amount of users and the high level of interaction raise challenges in building social
web applications in a cost-effective way. For instance, scalability and performance of the
applications must be taken into account. Furthermore, in order to provide a seamless user
experience, responsiveness of the application is an important factor. Due to increasing
mobile Web usage, applications need to be able to deal with intermittent loss of connectivity
of mobile clients. Ideally, applications can be used even when the user is offline.
These and other problems must be faced when building social web applications. Tradi-

tional web application approaches often fail to meet the new requirements of social web
applications.

Idea and goal. In this work, a new approach in building social web applications in a
cost-effective way is designed and evaluated. Subject to the new approach is Xydra, an
open-source platform-independent data management framework. Xydra’s features are
already in compliance with several of the requirements for social web applications. For
instance, scalability and performance are claimed to be an integral part of the Xydra
framework. Overall, it presents itself as a promising framework for the development of
social web applications. Until now, however, it has been unclear whether Xydra is suitable
for such applications. Therefore, the goal of this work is to evaluate Xydra in regards to
its suitability for building social web applications in two steps. First, a blueprint design of
building social web applications with Xydra in a cost-effective way is developed. Second,
this solution is evaluated in respect to the requirements of social web applications and
compared to alternative approaches.

Outline. Chapter 2 presents a brief definition of social web applications as well as a
comprehensive introduction to the Xydra framework. The chapter closes with an overview
of core technologies used within this work.
Chapter 3 discusses the requirements of social web applications. Subject to the dis-

cussion are issues such as scalability, responsiveness and cost-effectiveness among other

7

8 1 Introduction

requirements.
Chapter 4 analyzes traditional web applications and their short-comings when building

social web applications. As the costs of an application are an important aspect of the
evaluation in this work, the analysis contains an overview and comparison of pricing
models of cloud service providers.
A central part of this work is Chapter 5 - the Design Chapter. Therein a blueprint

of building social web applications with Xydra in a cost-effective way is presented. The
architecture and application structure are discussed in detail.

Chapter 6 presents an experimental application that adheres to the formerly described
design.
Chapter 7 discusses the extent to which the design meets the formerly discussed

requirements. A closer look is given on the aspects of responsiveness and cost-effectiveness
of the provided solution. The chapter closes with a comparison of the solution presented
in this work and other third-party solutions.
Chapter 8 gives a resume of the solution and findings presented in this work and a

future outlook.

2 Background

This chapter introduces social web applications and an overview of the Xydra framework,
that is used in the remainder of this work, is given. Furthermore, the replication capability
of Xydra is characterized. The chapter closes with a brief description of other technologies
used.

2.1 Social web applications
The term social Web application describes a rapidly evolving concept of web sites that
focus on social features. The feature set usually encompasses the formation of communities:
users can publish a profile, associate themselves with other users and have the ability to
discover new users [BE07].
Usually, the communities serve a certain purpose that can be as broadly as mapping

the real-life social relationships between people onto the web or be as specific as forming
communities around a certain topic. The concrete feature set of a social web applications is
diverse and usually bound to the aspect it focuses on: for instance, a social web application
for sharing of photos will likely offer ways to annotate photos or comment on them. A
social web application for broadcasting short messages may focus on the near instant
delivery of messages. In this work, a social web application for collaboratively managing
and delegating tasks is presented.
A common concept among social web applications is the ability for users to publish

user-created content (UCC) [VWV07]. The UCC may be photos, audio or video content,
books or to-do items. Users of a social web application may be able to collaboratively
edit the UCC. As a single social web application can have a user base of millions of users
with a high level of interaction, architecture challenges such as performance, scalability
and availability of the application are raised [KJL10]. Other important aspects of social
web applications are the responsiveness of the application, as a seamless user experience
is a significant factor for success of an application. With the rise in mobile Web usage,
unstable connectivity of users must increasingly be taken into account and raises questions
about the consistency of the application.
The requirements of social web applications are discussed in more detail in Chapter 3.

9

10 2 Background

2.2 Xydra
In this section Xydra1, an open-source platform-independent application model and data
management framework, is described.

Data model
Xydra uses a hierarchical, tree-structured data model that consists of five types of singular
entities, namely XRepository, XModels, XObjects, XFields and XValues.

Entities

At the root level, a XRepository is a container of a set of XModels. A repository provides
methods for creating, retrieving, and removing XModels. A XRepository is only used to
store and organize XModels, but is generally not used to model data by itself. XModels,
however, are used to model the application data at a high level. Similar to the methods
provided by a XRepository, XModels support methods for creating, retrieving and removing
XObjects entities. XObjects contain a set of XFields which represent attributes of the
XObject. XObjects also support the respective methods for creating, retrieving and
removing XFields. XFields, in contrast to the former entities are a container for at most
one XValue entity. Besides the methods for creating, retrieving and removing XValues,
XFields also support a modify method to change the value of a XField. XValue entities,
being at the leaf level of the tree structured data model, represent primitive data structures
to store single values of the type boolean, integer, long, double or string. In addition to
single value types, Xydra also supports XValue entities that store abstract data structures
like lists or sets of primitive values. List XValue entities are used to represent structured
or ordered data while sets represent a duplicate-free, unordered collection of primitive
values.

How these entities relate to entities in other domains is determined in Table 2.1.
Figure 2.1 illustrates the hierarchical, tree-structured entities.

Xydra Database Object Oriented
Programming

Example

XRepository Database - -
XModel Table Packgage Todolist
XObject Row Object TodoItem
XField Column Field TodoDescription

Table 2.1: Xydra entities and corresponding entities in the domain of databases, object
oriented programming, and an example use case.

1 Xydra - The application model for seamless usage on GAE, GWT and pure Java - Google Project
Hosting, http://code.google.com/p/xydra/ accessed July 12, 2012

2.2 Xydra 11

Ids and Addresses

Each entity type with the exception of the XValue entity type has an XId that is used to
address the entity with respect to its parent entity. The XId is a unique identifier among
its siblings but may not be globally unique. An XId can be thought of as the name of an
entity much like a filename in a folder. In order to be able to globally address entities,
each entity also has an XAddress that is a concatenation of its XId and the XAddress of
its parent. An XAddress is therefore similar to a filename including the absolute path. As
Figure 2.1 shows, the addressing scheme follows the pattern of addressing in traditional
directory trees. Both XId and XAddress are specific XValue entities in addition to the
primitive and abstract XValue entities mentioned above.

XRepository

XModel

XObject

XField XValue

XField XValue

XObject

XField XValue

...

...

XModel

XObject

XField XValue

...

TodoList

TodoItem

Description “Call Peter”

Main

XID XID XID XID

XAddress Main/TodoList/TodoItem/Description

Figure 2.1: Hierarchical model of Xydra entities1

12 2 Background

Commands
Xydra supports operations for creating and removing entities on each level with the
additional method of changing the value of a XField entity. The operations are named
XCommands, that encapsulate single or multiple change operations on any type of entity.

Xydra distinguishes between two types of XCommands, safe and forced XCommands.
Safe XCommands contain operations that require a certain precondition to be fulfilled in
order to be executed. Suppose an operation of the type Add, e.g. a new XModel, with a
certain XId, should be added to a XRepository. Using a safe XCommand, this operation
will only succeed if the XModel’s XId doesn’t already exist within the XRepository.
Analogously, a safe XCommand with an operation of the type Remove and a given revision
number has an implicit precondition that the entity to be removed must have a matching
revision number and it must exist before it can be removed. In addition to that, safe
XCommands with an operation of the type Change only succeed if the XField to be changed
has the same revision number as specified in the XCommand and will fail otherwise.

On the other hand, forced XCommands succeed but may have no effect. Again, suppose
an Add operation of an XModel to an XRepository and the XModel already exists within
the XRepository. The forced XCommand will succeed but have no effect as its intended
result is already present. Correspondingly, an XCommand with a Remove operation always
succeeds irrespective of the existence of the entity to be removed. As stated above, a safe
XCommand, however, would fail in both scenarios. Finally, a forced XCommand with a
Change operation is executed on an XField without requiring a certain revision number.
As a summary, forced XCommands care about a postcondition whereas safe XCommands
require a precondition to be fulfilled.

Revisions

Given the provided XCommands, Xydra increases a revision number on each entity affected
by an XCommand issued. When a child entity is added or removed as well as when an
XValue is changed, the revision number of all its parents is increased.

Actors

Each XCommand is executed on behalf of a so called actor. The presence of actors allows
Xydra the support of access rights management and authorization on the application data.

Events
Xydra generally supports concurrent access and modification of application data by multiple
actors. The application data is modified by applying XCommands on any type of entity

1 A similar illustration originally appeared in the Xydra Wiki,
http://code.google.com/p/xydra/wiki/XydraBasics, accessed Jul 12, 2012

2.2 Xydra 13

on behalf of an actor. To alleviate application development in respect to changes made
to the application data by different actors, Xydra sends out and allows observing change
events, namely XEvents, as a result of executed XCommands. For one, XEvents include
information on the actor responsible for the change and the type of change, i.e. Add,
Remove, Change or Transaction. The type of change represented by XEvents is directly
related to the XCommand issued, e.g. an XCommand of type Add will result in an XEvent
of type Add. XEvents also include the XAddress of the modified entity and information
on the increased revision number after the XCommand has been applied.

Changelog

Xydra keeps a history of all XEvents that result from changes made to an entity. Each
changelog entry includes the actor who invoked the respective change operation. It is
therefore possible to revert any changes made to an entity: Each change can be reverted
by executing the inverse type of XCommand, that is determined by the type of XEvent.
A sequence of changes found in the changelog can then be rolled back by issuing inverse
XCommands in reverse order. The existence of a changelog also helps to synchronize
entities among a server and client by comparing their changelogs. More information on
the synchronizer is provided in Section 2.2.

Transactions
XTransactions are extended XCommands that contain a sequentially ordered list of
basic XCommands to be executed in a row. If all contained XCommands succeed, the
XTransaction as a whole succeeds. If, however, an XCommand fails, then the XTransaction
needs to roll back and undo any formerly executed XCommand of that XTransaction.
In this way, XTransactions guarantee atomicity; i.e., they preserve an all-or-nothing
property. Because XTransactions are XCommands themselves, they can be sent and used
to synchronize operations between a client and server. As a side note, XTransactions
could contain XCommands that are XTransactions themselves. In this case the structure
is flattened and all nested basic XCommands are merged into one XTransaction.

Persistence
Xydra supports a persistence layer to permanently store application data. The persistence
layer uses the Google App Engine data store described in Section 2.5. The persistence
layer offers access to so called snapshots of XModels, that represent the state of an XModel
for a given revision number.

Synchronizer
The Xydra synchronizer is capable of synchronizing a client-side XModel with a server-side
XModel. For each XModel and containing XObjects it stores a synchronization revision

14 2 Background

number. The synchronization revision number determines the highest revision of an entity,
that has been synchronized with the server.
In order for this synchronization to work, the synchronizer differentiates between local

changes and remote changes.
Local changes are XCommands, derived from the changelog, that have been applied

locally but that have not been sent to the server yet. Each XCommand affects a particular
XEntity that is part of the XModel or affecting the XModel itself. During a synchronization
step these local changes are sent as XCommands to the server. The server applies these
XCommands and returns resulting XEvents. Some XCommands may fail due to a conflict.
For those failures an empty result is returned. Besides the XEvents resulting from client
XCommands, the server also includes any XEvents from XCommands that were issued by
other clients or originated from server-side execution of application code.

The returned XEvents from the server after synchronization are called remote changes.
From these remote changes XCommands are derived. The remote changes also include
XEvents that are the result of XCommands the client sent to the server during syn-
chronization. All XCommands derived from remote changes, leaving out the ones that
originated from the client, are applied locally. The ones that originated on the client are
already applied and are therefore left out. After a synchronization step on the client-side,
the synchronizer sends out XEvents on all XEntities that were affected by synchronized
XCommands. These events can be observed by a client-side application in order to react
on remote changes.
After a synchronization step both client and server have an identical XModel.

2.3 Replication
An XModel that is present on a client is usually a replica of a server-side XModel. The
replicated XModel is subject to synchronization by the Xydra synchronizer. In this section,
the Xydra synchronizer is characterized in accordance to a classification of replication
variants presented in [Ter08]. Definitions of the classification terms are also given in [Ter08].

The basic system model of the Xydra synchronizer assigns the server the role of a master
and the clients the role of devices, therefore it can be characterized as device-master
replication.
When exchanging updates, e.g. changes on an XModel, between the master and the

device, the updates are represented by the operations, e.g. XCommands or corresponding
XEvents. As the synchronizer sends XCommands and receives XEvents, the synchronizer
is using an operation-sending protocol.

The Xydra changelog keeps track of operations, XCommands and XEvents, and revision
numbers, it therefore can be characterized as a log-based recording of updates.
As the synchronizer stores a synchronization revision number for each XModel and

XObject, the log-based protocol can utilize this knowledge vector to not send redundant
updates between the devices and the master. Therefore, it can further be characterized

2.4 HTML5 Web Storage 15

as a knowledge-driven log-based protocol. A similar approach has been demonstrated by
Bayou [TTP+95].
The ordering of updates is made possible by utilizing the revision number of each

operation. Therefore, the synchronizer is further characterized as using update counters.
Conflicting updates are detected on the server by comparing the revision numbers

of operations. The revision numbers of a sequence of operations thereby function as
dependency checks on the update. Therefore, the detection can be characterized as
made-with-knowledge conflict detection that utilizes dependency checks. Again, a similar
approach has been used by Bayou [TTP+95].

When a conflicting update is detected by the server and the device is notified of it, the
client-side synchronizer allows the registration of callbacks for conflict resolution.
To conclude, all operations are received by the server exactly once. The operations

are ordered by revision numbers and can be executed in a deterministic way. Conflicting
operations can be detected and rejected by the server. A rollback on the device is made
possible by utilizing the changelog. The device can implement specific code to resolve
conflicts. By means of this characterization and its effect, the Xydra synchronizer maintains
eventual consistency.

2.4 HTML5 Web Storage
Within this work, the HTML5 Web Storage [Hic11], also referred to as local storage,
feature is used. Web Storage is a browser key-value store that web applications can use to
permanently store application data. The web storage feature is supported across modern
browsers and allows the building of web applications that can work while the browser is
offline.

2.5 Google App Engine
Google App Engine1(GAE) is a Platform as a Service (PaaS) cloud service. It provides
a server-side application execution environment for applications written in a variety of
languages, including Java. GAE provides APIs for services such as file storage, database
access, sending email and others that application can use. The services provided are highly
scalable and do not need to be maintained by the application developer. Applications are
bundled in containers that are automatically distributed and executed across multiple
servers on increasing demand.
Xydra uses the GAE service’s storage capabilities and other features. The Xydra data

model is permanently stored within the GAE key-value datastore. By using the GAE
service, applications built with Xydra benefit from GAE’s scalability features.

1 Google App Engine - Google Developers, http://developers.google.com/appengine accessed July 24th,
2012

16 2 Background

In Section 4.2 a comparison of the pricing model of GAE and other cloud service
providers is given.

2.6 Google Web Toolkit
Google Web Toolkit1(GWT) is a web application framework. GWT allows the building of
web applications in Java that can be executed within Google App Engine at the server-side
and also compiled to efficient JavaScript code runnable across browsers at the client-side.
Developers can use many of the benefits of Java, such as being statically typed, and the
Java ecosystem, including integrated development environments, in order to write their
applications in a cost-effective way. In this work, GWT is used to compile the Java-based
design solution and the Java-based Xydra framework into JavaScript in order to run it
across modern browsers.

1 Google Web Toolkit - Google Developers, http://developers.google.com/web-toolkit/ accessed July
24th, 2012

3 Requirements

In this chapter requirements for building social web applications are discussed. Subject to
the discussion are issues such as scalability, availability, and responsiveness among other
requirements.

Scalability

When building social web applications, scalability of the application is of particular impor-
tance. A single social web application can have thousands or even millions of simultaneous
users. Therefore, scalability is required in almost any aspect of the architecture.
Suppose a social web application exists in which users can publish articles as authors

and subscribe to authors for new articles as readers. A group of co-authors may work
together on a single article that is published to an audience of readers. Users can both be
authors and readers at the same time.
Let n be the number of users, k the number of articles per user, sw the number

of co-authors working on a single article, sr the number of readers per author. From
this exemplary model regardless of social artifacts and numbers given by Facebook1, a
reasonable estimate of the size of the parameters is:

Parameter Description Typical Upper bound
n #users 1,000 – 1,000,000 1,000,000,000
k #items per author 100 – 1,000 1,000,000
sw #co-authors 1 – 10 100
sr #readers per author 10 – 100 1,000,000

Table 3.1: Estimated figures for a typical social web application

Requirement 1: Scalability of the application is required with respect to the
number of users and application specific parameters such as the number of
items.

1 Key Facts - Facebook Newsroom, http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
accessed July 19, 2012

17

18 3 Requirements

Consistency

Considering the order of magnitude of the user base and the numerous author-reader
relationships in the example application, global data consistency can be challenging while
providing concurrent, real-time access to data objects. In practice, it is often only feasible
to use relaxed guarantees on consistency such as eventual consistency [Bre12].
As an example for eventual consistency: For an application it may be tolerable that a

newly published article is visible to all readers within a certain amount of time, e.g. 5
minutes, under normal system load. In exceptional cases though, no specific time frame
can be determined, eventual consistency only guarantees that the article will be visible at
some undetermined time in the future.
Requirement 2: Eventual consistency is required for application data.

Availability

In addition to consistency, availability of the application should be as high as possible.
The user is able use the application while he can communicate with the server. Yet, the
goal is to also support availability of the application in times the user is offline, e.g.: he
experiences an intermittent loss of connection, or in cases of server outages. The user
should be able to use the basic functionality of the application even though he can not
directly synchronize his changes with the server while being offline.
Requirement 3: Availability of basic application functionality while the user

is offline.

Synchronization, conflict detection, and resolution

When users work on application data while they are offline, the state of the application
data will likely diverge from the state other users of the application see. Once the user
reconnects, his changes should be synced with the server and the system should reconcile
differences in state and do its best to resolve conflicting changes of other users [Can10].

For instance, suppose two co-authors editing a single article who are using the example
application through an unreliable mobile network. At times, both authors may simultane-
ously be offline for a longer period of time. They can still edit the article locally and later
need to synchronize the changes with the server. During synchronization, conflicting edits,
e.g. one author first deleted an paragraph while the other subsequently added sentences
to it, need to be detected and gracefully resolved. For instance, the latter author could be
asked whether he wants to revert the deletion by the first author or whether he accepts
his changes to be lost.
Requirement 4: Local changes are synced with the server, conflicts are

detected and gracefully resolved automatically or with user intervention.

19

Responsiveness

Good responsiveness is a general requirement for a seamless user experience. It is particu-
larly crucial due to the real-time nature of social web applications. Following a certain
user activity, results of that action should be visible to the user within 0.1s such that
the user has the perception that he were directly working on the application data [Nie93].
Providing such responsiveness can be challenging when the result of that action involves
communicating with the server as round-trip times can already exceed the 0.1s bound.
Therefore, the system should resort to working on local data directly accessible by the
user and lazily propagate changes to the server in the background as much as possible. In
addition to client-side application responsiveness, server-side response times for processing
of application data should likewise be fast.
For instance, a newly created article may be instantaneously visible and modifiable

by the user locally while a background task is synchronizing that article with the server.
At times, this optimistic approach may lead to actions that were processed locally but
couldn’t be completed globally on the server. In this case, the system should handle such
conflicts gracefully in ways described in the previous section on conflict detection and
resolution.
Requirement 5: The application should respond to user activity within a

timespan that is perceived by the user as responsive as working on local data.

Device independence

Social web applications should be compatible with any modern Web browser environment
independent from the actual device or platform the browser is executed upon. A user may
access a single application from his desktop computer and his mobile device, such as a
tablet computer or smartphone. Therefore the application should gracefully adapt to the
functionality provided by the browser, e.g. local storage capability.
Requirement 6: The application should be compatible to most of the modern

browsers and therefore be mostly device independent.

Cost-effectiveness

Cost-effectiveness is largely affected by two main cost-drivers: development costs and cost
of operation of an application. From a developer perspective, the developer should be
assisted by tools such as a powerful development environment to be able to design and
build social web applications with as little effort and time consumption as possible.

In addition to the development, the on-going maintenance of the application should also
be cost-effective by following best practices and well-know patterns during development.
Code base maintenance can be eased, when parts of the application code can be shared
between server and client. This means, that the application business logic can be reused
and does not have to be adapted and rewritten to be able to run on the client. Deployment

20 3 Requirements

of the application and its future releases should only require the end-user to reload the
web application from its originating domain.

Another aspect in cost-effectiveness is the computational cost of the application. From
an application provider perspective, the application will incur costs on computation,
storage, and bandwidth. Therefore, at an early stage the application development should
respect cost metrics and make use of the resources in an economical way. For instance,
the amount of data that is transferred between the client and server should be limited to
a minimum.
Requirement 7: The application should be cost effective in regards to devel-

opment, maintenance and computational resources.

Data versioning and history

In order to alleviate support for consistency and conflict resolution, the underlying
application data model should support versioning of the data entities. To support this,
each data entity should keep a history of all changes made to itself.
Requirement 8: The data model should support versioning and keep a full

history of changes on data entities.

Security

As a huge part of the functionality of the application should be available to the user
even when the user can not establish a connection to the server, e.g. he is offline, it is
required that the logic of the application is residing at least in parts on the client. The
client-side part of the application may apply changes to the data which are later synced
with the server. This immediately raises concerns about the validity and integrity of
the changes to the data that the server receives from the client [Rit07]. When the client
is allowed to change application data, the server must take measures to ensure these
changes comply with a correct execution of the application, i.e. the data is a result of
valid state transitions. Furthermore, the data must be validated to not contain harmful
input that would compromise security. Finally, the server must ensure authenticity and
check authorization of the client. All in all, this the principle to "never trust the client"
must be enforced. Security, therefore, is an important factor.
Requirement 9: The server must authenticate and authorize the client. Syn-

chronized data must be validated.

User interface and view binding

The user interface should instantly reflect changes made to the data model, referred to as
model-view binding. The developer should be able to define a declarative layout which
is translated to HTML with interactive JavaScript elements. The layout mainly consists
of widgets that represent single application objects, e.g. an article, or can represent

21

collections of such objects, e.g. a list of articles. These widgets should be bound to
the application data. Whenever the user takes an action within the application which
modifies the underlying application data, these changes should instantly be reflected by
the widgets. For instance, a widget listing a collection of articles should directly display
any new article that a user created either locally or which is originating from elsewhere
from synchronization. In addition to this established data-binding UI-pattern, widgets
should also reflect whether their underlying data objects are already synchronized with
the server or only preliminarily created locally.
Developers should be assisted in binding widgets to the application data to alleviate

the burden that is usually involved in keeping the view state in sync with the application
data1.
Requirement 10: A mechanism for the binding of user interface elements to

the underlying application data is required. The elements should reflect the
synchronization state of the application data.

Summary
In Table 3.2 a summary of the discussed requirements is listed.

Requirement Description
R1 Scalability of the application is required with respect to the number of users and application

specific parameters such as the number of items.
R2 Eventual consistency is required for application data.
R3 Availability of basic application functionality while the user is offline.
R4 Local changes are synced with the server, conflicts are detected and gracefully resolved

automatically or with user intervention.
R5 The application should respond to user activity within a timespan that is perceived by the

user as responsive as working on local data.
R6 The application should be compatible to most of the modern browsers and therefore be

mostly device independent.
R7 The application should be cost effective in regards to development, maintenance and

computational resources.
R8 The data model should support versioning and keep a full history of changes on data entities.
R9 The server must authenticate and authorize the client. Synchronized data must be validated.
R10 A mechanism for binding of user interface elements to the underlying application data is

required. The elements should reflect the synchronization state of the application data.

Table 3.2: List of requirements for social web applications

1 Concepts of keeping a user interface in sync with an application data model are described by Martin
Fowler in "GUI Architectures", http://martinfowler.com/eaaDev/uiArchs.html, accessed July 13, 2012

4 Analysis

This chapter analyzes traditional web applications and discusses the short-comings with
respect to the new requirements of building cost-effective social web applications. The
short-comings are discussed in order to contrast the traditional approach with the design
of the approach presented in the following Design chapter.

The remainder of the chapter gives an overview of pricing models of three cloud service
providers in order to draw conclusions on the cost-effectiveness of the designed solution,
which is discussed in the Evaluation chapter.

4.1 Traditional web application
This section introduces traditional web applications which represent a simple form of web
application.
A traditional web application embraces the server as the main component of the

architecture that is holding the application state. The client browser merely presents the
user interface and holds no application state.
As shown in Figure 4.1, the architecture can be decomposed into three layers, the

presentation, application and persistence layer [ACKM10]. In the following, the layers for
the traditional scenario are described in more detail.

Client

Presentation layer

Persistence layer

Application layer

Server

Presentation layer

HTTP Request

HTTP Response

Figure 4.1: Visual overview of a traditional web application architecture.

Presentation layer. The presentation layer is present on both the client and the server.
The presentation layer on the client mainly consists of plain HTML pages that are

returned by the server. User interaction with this page can be augmented with basic
JavaScript. For instance, dialogs may inform the user of a missing but required input when

23

24 4 Analysis

submitting data to the server. The client-side presentation layer only provides minimal
functionality.
The server-side presentation layer, however, is more complex and its main goal is to

transform application layer data into a view that can be delivered as a page to the client.
Therefore, it accounts for the visual representation of the application layer data. For
instance, in order to meet this goal, templates can be defined that contain placeholders
for application data attributes. A server-side render engine is often used to compile these
templates and substitute the placeholders with actual application data. The result is a
rendered page that can be delivered to the client.

Application layer. The application layer resides exclusively on the server. It holds the
business logic of the application which defines the states of the application and the allowed
transitions between them. The state is mostly represented by application level data objects.
The data objects are composed of raw data that is permanently stored in the persistence
layer. The application layer decides which data needs to be stored and when to hand the
data down to the persistence layer. It also determines which data is handed over to the
presentation layer.
The allowed state transitions are usually represented in application level methods that

are invoked when the client fetches the corresponding Web resource through a HTTP
request on a given URL.
The application layer accepts data from user input when the user invokes a particular

application method. For security reasons, the application layer needs to authenticate the
user and check if the user is authorized to invoke that method. It also needs to validate
the input.

Persistence layer. Like the application layer, the persistence layer is also found exclusively
on the server. The main goal of this layer is to store application data and provide access to
it in a flexible and efficient way. For efficient storage, the data is often stored in a stripped
down version as opposed to an enriched representation found in the application layer.
Indexes are regularly used for fast access to that data, including access via queries. This
functionality is often provided by including third-party relational databases or key-value
stores into the architecture

Layer interaction
Following the previous description of the layers, the flow of application data in connection
with the layers is described next.
Subject to the step-by-step walk-through is a view on the flow of data within a complete
example, where application data is sent from client to the server which affects the server
response as shown in Figure 4.2.

4.1 Traditional web application 25

Presentation layer

Application layer

Persistence layer

Presentation layer

3. Fetch, query 4. Records 6. Update

7. Application data

5. Processing
2. Authentication,

Authorization
Validation

1. HTTP request

8. HTML page response ServerClient

Figure 4.2: Interaction flow between the layers

Each user interaction with a transition from one application state to the next requires
the sending of a request to the server which has a page with the new state as the response.
As the application state fully resides on the server, a round-trip is necessary. A single
state transition is the result from a method invocation by the client.

1. HTTP request. Initially, the client starts with requesting a Web resource on the server
through a HTTP request by the client browser. A first request could be the initial
page. Subsequent requests could carry user input from form fields, which are part of the
presentation layer. At the server-side application layer these Web resource requests usually
result in application layer methods to be executed.

2. Authentication, authorization, validation. The server-side application layer needs to
authenticate the client if the requested resource has security constraints. It then needs
to check whether the authenticated client is actually authorized for the method that is
executed by the resource request. If there is input sent along the request, the server needs
to validate that data.

3. Fetch, query. When the request is permitted and validated, in order to actually process
the request the application layer likely needs to fetch records from the persistence layer
that are subject to the method execution resulting from the request.

4. Records. The persistence layer returns resulting records upon a fetch request or query
from the application layer.

5. Processing. When all data required by the request has been obtained from the per-
sistence layer, the actual processing of the method takes place within the application

26 4 Analysis

layer. During processing application data is likely modified resulting in a new state of the
application.

6. Update. The application layer needs to store the newly modified data in the persistence
layer. The new state is effectively permanently stored.

7. Page rendering. The application layer hands over relevant and updated application
data to the presentation layer in order to compile the page that represents the result of
the request originally invoked by the client. For that request, predefined templates with
placeholders substituted by the application data can be compiled to a resulting HTML
page.

8. HTML page response. The compiled page is returned to the client browser.
In a traditional web application this application flow or layer interaction is necessary

for each interaction the client does. Most notably, a round-trip between client and server
is required for each interaction.

Data transfer sizes and number of round-trips
In this section estimated quantitative results on the amount of data that is transferred
during a typical user interaction with the application are given. In addition to that, the
required round-trips are determined.
On each interaction the full page needs to be loaded. Let b be the size of the page

HTML in bytes excluding the tasks, td the data size of one task, tm the HTML markup to
render a task, both in bytes. Let n be the number of tasks to be shown and k the number
of interactions.
The total size of one page p in bytes is:

p = b + n(td + tm) (4.1)

The total amount of bytes s the client needs to receive from the server for all k interactions
is:

s = kp (4.2)

As each interaction requires a round-trip to the server, the number of round-trips lRT is
simply:

lRT = k (4.3)

4.2 Cloud service provider comparison 27

Disadvantages of traditional web applications
Traditional web applications follow a server-centric and thin-client model. This means,
that the client is dependent on the server in almost every aspect of the application except
for displaying a single page as a single state of the application.
Therefore, traditional web applications have several disadvantages in respect to the

requirements of social web applications:

Responsiveness. Because each interaction requires a round-trip to the server, results of a
user action are not visible immediately but take at least one round-trip time. As an entire
page is returned, the amount of bytes that are transferred is relatively high and does add
to the overall response time. This has a particular impact on the responsiveness of mobile
clients when bandwidth is usually small and latency is high.

Scalability. Due to the exclusively server-side execution of the application, scalability can
be an issue as the server can become a bottleneck and performance can be low.

Availability. Moreover, when the server experiences an outage, the entire application can
become unavailable.

Offline availability. Clients can not continue to use the application when they are offline
or in case of a server outage. Thus the application is not providing offline availability.

Costs. The relatively huge data transfer sizes incur high traffic costs on the client- and
server-side. The server-centric application execution also incurs high computational costs
at the server-side.
As traditional web applications have several disadvantages, in practice, alternative

approaches are commonly used. Alternative approaches are subject to the discussion in
the following chapters.

4.2 Cloud service provider comparison
In order to draw conclusions on the cost-effectiveness of the solution presented in this
work, this section gives a brief overview over key figures in cloud service pricing. Subject
to the comparison are offerings by Amazon Web Services (AWS)1, Google App Engine
(GAE)2 and Windows Azure3. The three vendors are reasonably the most relevant in
the cloud service provider market. The pricing comparison is based on compute instance
offerings, which are on a par with each other with respect to the computing performance.
The costs of computation, bandwidth and storage for each type of instance are denoted in
Table 4.1.

28 4 Analysis

The costs of storage access are omitted within the comparison, as the figures depend
either on the number of accesses or the time length of access with diverse pricing models
among the providers and a high dependence on the particular application. The indicative
storage access costs of a concrete example scenario, however, are given in Chapter 7.

Cost factor Amazon Web Services Google App Engine Windows Azure
EC2 Small Instance, Linux
OS, 1.7 GB Memory, 1
CPU 1.2 GHz, 160 GB
HDD

Front-end F2 Instance,
256 MB Memory, 1 CPU
1.2 GHz

Small Instance, Windows
OS, 1.75 GB Memory, 1
CPU 1.6 GHz, 225 GB
HDD

Computation $ 0.08/hr $ 0.16/hr $ 0.12/hr
Bandwidth $ 0.12/GB $ 0.12/GB $ 0.12/GB
Blob Storage $ 0.125/GB, S3 $ 0.13/GB $ 0.125/GB
Key-Value Storage $ 0.25/GB, SimpleDB $ 0.24/GB, Datastore $ 0.125/GB

Table 4.1: Computing instance pricing comparison for Amazon Web Services, Google App
Engine and Microsoft Azure.

According to the comparison, the costs for bandwidth and large binary storage (blob
storage) are almost the same among the three particular instance offerings. While this
also holds true for the key-value store of AWS and GAE, Windows Azure is offering a
key-value store at approximately half the price.

However, there is a difference in the computational costs of the instances with Amazon
having the cheapest offering and GAE being about double the price, while Microsoft
Azure’s computational costs are between the two.

The price difference can partly be explained by the different kind of service the providers
offer. Amazon is an Infrastructure as a Service (IaaS) provider where a lot of responsibility
including scalability and maintenance is left up to the developer. In contrast to this, GAE
is a Platform as a Service (PaaS), where a lot of solutions to development issues including
scalability and maintenance are already part of the platform. This does partly justify
the higher instance computational costs with GAE. Moreover, the weaker performance
characteristics of the instance with GAE are alleviated by the fact that the resources
are exclusively available to the application. This means, the resources are exempt from
powering an underlying operating system in contrast to AWS and Windows Azure, where
the operating system consumes part of the available resources. Windows Azure is a self-
described a hybrid of an IaaS and PaaS service which is also reflected by the computational
costs which lie in between the other two offerings.

4.2 Cloud service provider comparison 29

To conclude, the costs for computation, storage, and bandwidth among the three major
vendors are basically on a par with each other. This allows for drawing more general
conclusions on overall costs by the example cost calculation that is given within the
Evaluation Chapter 7.

1 Amazon EC2 Pricing, http://aws.amazon.com/ec2/pricing accessed July 23, 2012
2 Google App Engine Pricing, http://cloud.google.com/pricing accessed July 23, 20122
3 Pricing Details: Windows Azure, http://www.windowsazure.com/en-us/pricing/details accessed July

23, 2012

5 Design of social web applications with Xydra

In this chapter the blueprint on how to design Social web applications based on Xydra
(SWAX) is described. The chapter begins with an introductory overview on the architecture
of SWAX applications.

5.1 Running example: Collaborative to-do list application
Throughout the remainder of this work, the design of SWAX applications is illustrated by
means of a concrete example SWAX application. The application is a collaborative to-do
list which allows the management of private tasks as well as the delegation of tasks to
others. The basic features are as follows: First, new tasks can be created. Initially, a new
task is marked as undone and can optionally be delegated. Second, tasks can be marked
as done or be canceled. A delegated task can be accepted or rejected by the receiving user
or it can be revoked by its creator. A delegated task can also be marked as done by its
creator or marked as delivered by the receiver after he accepted the task.

Users can add comments to tasks. When appropriate, mails will be sent out to the users
to inform them of important events regarding a task, such as a newly added comment or
a change of a task’s status.

31

32 5 Design of social web applications with Xydra

Figure 5.1: A conceptual illustration of the collaborative to-do list application.

5.2 Architecture overview
SWAX applications shift more functionality from server to the client. The client is now
the primary component in the architecture which also holds application state as opposed
to the traditional scenario described in Section 4.1. The server, however, merely serves as
a data broker and persistence component with little business logic.
Like a traditional web application, SWAX applications can also be decomposed into a

presentation, application, and persistence layer as shown in Figure 5.2. In contrast to the
traditional architecture, the application layer as well as the persistence layer are now also
placed on the client. The presentation layer is removed from the server and only present
on the client.

In the following, the layers and their distinguished usage, as opposed to the traditional
scenario, are described in more detail. First the client-side layers are explained followed by
a description of the layers which are left on the server. Throughout the following sections
the exemplary to-do list application is used to illustrate the design of a SWAX application.

5.3 Application structure on the client 33

Client

Presentation layer

Persistence layer

Application layer

Server

Application layer

Persistence layer

Synchronizer

Persistence layer

Figure 5.2: Visual overview of a SWAX application architecture

5.3 Application structure on the client
The client encompasses a presentation, application, and persistence layer to make the client
largely independent from the server. This architectural difference towards the traditional
scenario has the effect that the client now holds state across several user interactions. In
the next paragraphs the entities of each layer are introduced followed by a discussion of
key concepts of design, namely the state, separation of concerns, event propagation, and
nesting.

Entities. SWAX applications use a different kind of entity set on the three layers that
resemble the Xydra XEntities, XModel, XObject, and XField. The entities of one layer
correspond to the entities in the other layers. Entities of an upper layer augment the
entities of the underlying layer and help to separate concerns when designing SWAX
applications. An overview of the layers and their entities is given in Table 5.1. The key
principles of this concept are described next.

Layer Entities
Presentation layer ModelWidget ObjectWidget FieldWidget
Application layer AppModel AppObject AppField
Persistence layer XModel XObject XField

Table 5.1: Overview of the layers and their entities, e.g. a ModelWidget has one to many
ObjectWidgets. A ModelWidget is the visual representation of an AppModel.

State. As the client holds a local state within the application and persistence layer, the
state will eventually diverge from the global server-side state until the state is synchronized.
A state that is only known locally and not yet synchronized with the server is called a
preliminary state. A state that has successfully been synchronized with the server is called
persisted.
Part of the design of SWAX applications is to give the user feedback whether his local

state is only preliminary or has already been permanently stored on the server. There

34 5 Design of social web applications with Xydra

can be entities that have been changed locally since the last synchronization and whose
synchronization states therefore are preliminary. At the same time, entities which haven’t
been changed since the last synchronization keep the state persisted. However, an entity
is considered changed and therefore has a preliminary state whenever any of its children
has a preliminary state. This means, when an AppField is changed, the AppField, the
parent AppObject and the parent AppModel are all set to a preliminary state at once.

Separation of concerns. Each layer has a specific purpose following a separation of concerns
that is resembling concepts of the Model-view controller pattern [KP88, GHJV95]: the
presentation layer maintains the view, the application layer is home to the business logic
of the application and the persistence layer permanently stores the application state.
Subject to each layer are entities that maintain an intra-layer and inter-layer relationship.
The inter-layer relationship is realized by an event concept that is described next. This
is followed by a description of the intra-layer relationship that is established through a
nesting concept.

Event propagation. Xydra introduces an event concept. An XEntity can send out events
when the XEntity changes. This event concept is used by the application layer in order
to listen to changes within the persistence layer. Additionally, the event concept is
also maintained between the presentation layer and application layer. Widgets of the
presentation layer observe changes on the entities in the application layer. The details of
this event concept are discussed in the following sections on each layer.

Nesting. Xydra also introduces a hierarchical nesting concept on its entities: An XModel
has zero to many XObjects. An XObject has zero to many XFields. This nesting concept
is helpful when designing applications based on Xydra. For this reason, the same nesting
concept is maintained in the application layer (see Section 5.3.2) and presentation layer
described in Section 5.3.3.
In the following the persistence, application, and presentation layer are described in

respect to the key concepts of separation of concerns, event propagation, and nesting.

5.3.1 Persistence layer
The key purpose of the client-side persistence layer is to permanently store the application
state.

The entities of the persistence layer are XEntities, namely XModel, XObject, and XField.
As described in the Section 2.2 on Xydra, the nesting is as follows: an XModel has any
number of XObjects as children. An XObject has any number of XFields as its children.

Events on these XEntities are propagated to the application layer as XEvents. It is the
responsibility of the persistence layer to permanently store the XEntities across browser
restarts. It utilizes the browser local storage capability for this purpose. In addition
to that, it permanently stores any additional information that is necessary to rebuild

5.3 Application structure on the client 35

the correct client-side runtime state of the application layer. Being able to store the
application state and to restore the state after a browser restart are a main benefit of
SWAX applications.
Apart from changes that are mirrored from the application layer and that need to be

permanently stored, the persistence layer also needs to store changes originating from the
server and that were fetched during synchronization (see Section 2.2 for a discussion of
the synchronizer). The synchronizer fetches remote changes from the server that are yet
unknown to the client. When these remote changes are fetched, they are applied within
the persistence layer, XEvents are sent out which the application layer observes.

5.3.2 Application layer
The primary concern of the application layer is to provide the business logic of the
application. The entities of the application layer are called AppEnties, namely AppModel,
AppObject and AppField which correspond to the formerly described XEntities of the
persistence layer. In accordance to the Xydra XEntities, the nesting is as follows: an
AppModel has any number of AppObjects as children. An AppObject has any number of
AppFields as its children. The AppEntities are described in more detail in the following
paragraphs.
Events on these AppEntities are propagated to the presentation layer as AppEvents.

The application layer observes XEvents on XEntities in the persistence layer, this includes
synchronization state change events.
The application layer provides application methods that can be invoked by the pre-

sentation layer. In the to-do list example, the addition of a new to-do item is such an
application method. It is the responsibility of the application layer to validate such a
method invocation. This includes checking constraints on the method input parameters
obtained by the view. For instance, a to-do item description may not be empty.

Upon successful validation, the application layer executes the invoked method. Subject
to the method execution are the AppEntities.

Synchronization state As described in the paragraph on state, Xydra XEntities can either
be in a preliminary or persisted state. The kind of synchronization state is primarily a
concern of the persistence layer, but it is also important to give the user visual feedback on
the synchronization state within the presentation layer. To accomplish this, the application
layer observes the XEntities and propagates synchronization state change events to the
presentation layer.
In the following, the AppEntities are described in more detail.

AppField An AppField can either represent the state of an XField or be stand-alone. An
AppField is a single attribute. It defines the type of value it represents. For instance, the
description of the to-do item is an AppField which has a string type and the done flag is
of type boolean. AppFields can be children of AppObjects. Together they can be used to

36 5 Design of social web applications with Xydra

specify the schema of the application data. When data is validated for security reasons,
it is validated against the specified schema. Whenever an AppField’s value changes, an
AppEvent is sent out.

AppFields can be stand-alone, which means they are not representing a single XField but
rather represent values that are computed based on a function at runtime. This function
may depend on the value of multiple other XFields based AppFields or stand-alone
AppFields. For instance, the number of to-do items that are still open is a stand-alone
AppField whose value is a function that depends on all currently present to-do items,
in particular each item’s done flag. As such, computed AppFields can observe other
AppFields for changes and recompute or update their value accordingly.

AppObject An AppObject represents the state of an XObject and has AppFields as
children. Depending on the application, an AppObject has a defined structure with a
fixed set of AppFields. For instance, a to-do item is an AppObject of a fixed structure
that has a description and a flag whether it is done or open. When creating AppObjects,
the structural invariant, which is once defined, is validated.

AppModel The AppModel represents the state of an XModel and holds a collection of
AppObjects. AppObjects can be added or removed and corresponding events, called
AppEvents, are sent out. Logically, an AppModel is at the root of the application data
model hierarchy and has AppObjects as children.

AppEvents The purpose of AppEvents is to notify the presentation layer of changes on
AppEntities. The type of AppEvents are: 1. Add 2. Remove 3. ValueChange 4. SyncState-
Change

AppEntity AppEvent
AppModel Add, Remove, SyncStateChange
AppObject Add, Remove, SyncStateChange
AppField ValueChange, SyncStateChange

Table 5.2: AppEntities and the AppEvents they can sent out

When an application method modifies any AppEntities at the application layer, these
changes are mirrored at the persistence layer on the XEntities the AppEntities are
representing. The application layer also observes XEvents on any changes on these
XEntities that happen within the persistence layer during synchronization.

5.3.3 Presentation layer
The purpose of the presentation layer is to visually reflect the current client-side state of
the application and to provide interface components the user can interact with.

5.3 Application structure on the client 37

The entities of the presentation layer are the ModelWidget, ObjectWidgets and Field-
Widgets which correspond to the formerly described AppEntities of the application layer.
In accordance to the AppEntities, the nesting is as follows: an ModelWidget has any
number of ObjectWidget as children. An ObjectWidget has any number of FieldWidgets
as its children. The nesting concept can also be seen as a composition of UI components,
the widgets. Similar concepts of UI integration are described in [DYB+07].
The presentation layer has to goals, for one it observes AppEvents on the AppEntities

in the application layer to visually reflect them. Second, it propagates user interaction on
the view components to the application layer.

The interaction can invoke a client-side application method which can result in a state
transition. Unlike the static and simple presentation layer in the traditional scenario, the
presentation layer now provides broader functionality with extensive use of JavaScript.
It dynamically adapts to state transitions happening on the client and most importantly
without a round-trip to the server. The presentation layer mainly consists of the view
which is bound to the underlying application data model. The data model defines the
current state of the application and is part of the application layer which was described
previously. The view updates automatically when the data model changes, this is referred
to as model-view binding as realized by observing AppEvents. The view update process
usually transforms the application data model into a visual representation which can
include reformatting of the data. For this purpose, view templates containing placeholders
for application data can be defined. The placeholders are substituted with the actual
visual representation of the data on each update during the rendering process.

In the example to-do list view shown in Figure 5.3, the user can add a new to-do item
or remove it. Initially, there is no to-do item, so the view shows an empty to-do list. The
view provides a text input for the to-do item description and a button component for the
user to add a new to-do item. Upon clicking the button, the view invokes the appropriate
application layer method to add a new to-do item with the given description. The addition
of the to-do item leads to a new application state as the application data model now
contains the to-do item. The view is bound to these state changes and therefore updates
its to-do list which now includes the visual representation of the to-do item.

38 5 Design of social web applications with Xydra

Figure 5.3: Example to-do list view. A new to-do item can be entered into the input
component and added through the add button. The new application state with the added
to-do item is reflected in the updated view.

Entities of the presentation layer. In the following, the presentation layer widgets are
described. Figure 5.4 shows how these widgets are used.

Figure 5.4: The use of widgets in the example Todo List View.

FieldWidget A FieldWidget visually represents an AppField. In the to-do list example, one
FieldWidget is the to-do item’s checkbox while another is its description. A FieldWidget
knows how to translate an AppField property into a visual representation. For instance a
boolean AppField value that marks whether a to-do item is open or is done is represented
as a checkbox while the description string AppField is represented as a text node. In
addition to translating AppField types to corresponding visual components, FieldWidgets
can also format the output of an AppField. For instance, a FieldWidget can format a date

5.4 Application structure on the server 39

AppField relative to the local timezone.
Usually FieldWidgets are logically children of ObjectWidgets, but they can also be

logically parent-less and be used as stand-alone representations of computed AppFields.
For instance, a stand-alone FieldWidget could display the number of to-do items that are
still open.
FieldWidgets can observe ValueChange and SyncStateChange AppEvents. When an

AppEvent is observed, the widget updates its visual representation accordingly.

ObjectWidget An ObjectWidget is the visual representation of an application level
AppObject. Logically, the parent of an ObjectWidget is a ModelWidget and it has
FieldWidgets as children. The ObjectWidget as being the container to FieldWidgets
determines how its child FieldWidgets are visually arranged.

ObjectWidgets can observe Add, Remove, and SyncStateChange AppEvents. When an
AppEvent is observed, the widget updates its visual representation, it adds or removes
FieldWidgets or updates its sync state respectively.

ModelWidget A ModelWidget is a collection of ObjectWidgets. In the to-do list example,
the list of to-do items is a ModelWidget and each to-do item is an ObjectWidget. A
ModelWidget knows how to display a list of ObjectWidgets. A ModelWidget is bound
to an application level AppModel. Whenever the AppModel changes, the ModelWidget
updates accordingly. The changes the ModelWidget observes are the addition and deletion
of items within the AppModel. On addition of an item, the ModelWidget adds a new
ObjectWidget to its collection and on deletion, it removes it.
ModelWidgets can observe Add, Remove, and SyncStateChange AppEvents. When an

AppEvent is observed, the widget updates its visual representation, it adds or removes
ObjectWidgets or updates its sync state respectively.
Each type of widget can observe a synchronization state and will be notified by the

application layer on synchronization state changes. For instance, a to-do item that has been
added locally is represented by a Xydra XEntity. As long as the entity which represents
that to-do item has a preliminary synchronization state, the visual representation of the
to-do item is grayed out in the view until its entity has a persisted state.

5.4 Application structure on the server
The server encompasses an application and persistence layer and has no presentation layer.

5.4.1 Application layer
The server-side application layer complements the client-side application layer. When the
client synchronizes with the server, the changes that happened on the client are re-executed
on the server. As the changes are the result of a client-side method invocation within the

40 5 Design of social web applications with Xydra

client application layer, the server invokes similar methods in its application layer. The
concrete implementation of that method, however, can differ. For instance, a method to
add a to-do item can result in an email being sent, which can only be done on the server.
The server execution of the method may also have other side effects, for instance, the to-do
application could be extended to allow the delegation of to-do items to someone else. In
this case, the server would modify the other user’s application state on behalf of the client.

Subject to the server-side method invocation are AppEntities that can be modified. Like
the AppEntities on the client-side, these AppEntities are based on XEntities such that
changes on them are mirrored onto XEntities within the persistence layer.

Security. When the server receives changes from the client he cannot trust the data, as a
malicious client could send arbitrary data, in particular data that could compromise the
server. The data exchange is the responsibility of the synchronizer. Checking that the
data meets security constraints is the responsibility of the server-side application layer.
The application layer needs to perform the following security checks:

1. The application layer endpoint of the synchronizer must authenticate the client.

2. The changes must match the Xydra data structure, i.e. they are a set of XCommands.

3. The semantics of the changes must be interpreted, i.e. which method should be
invoked with which parameter values. This is described in more detail in Section 5.5
on remote method invocations.

4. The parameter values need to be validated to conform to the application data schema,
e.g. validating the type of a parameter value as well as its content in respect to its
syntax and semantics.

5. The application layer must check if the client is authorized to invoke the particular
method with the given parameter values.

5.4.2 Persistence layer
The server-side persistence layer stores XEntities that are are represented by AppEntities
and were modified by the application layer. It uses the key-value store that is provided by
Google App Engine for storage.

5.5 Remote method invocation and synchronization
While the synchronizer synchronizes changes, it is also used to invoke remote methods on
the server. Traditionally, when the client wants to invoke a remote method on the server
it can typically issue a HTTP request on a webservice offered by the server. For instance,
one such method could be a new user sign up and the sending of an email on behalf of

5.6 Interaction control flow 41

the client as part of an application workflow. The business logic to create a new user will
likely reside on the server-side. Sending an email also requires a server-side component.

Given the Xydra application structure, however , the server does not offer any additional
web service besides the synchronizer endpoint. In fact, the semantics of a method invocation
are encapsulated within changes the synchronizer will sent to the server. This is realized by
establishing a simple protocol between the client and server which is using the synchronizer
as the transport: Changes at the persistence layer that result from a single application
layer method invocation at the client browser are grouped within a transaction. One
transaction with its included commands therefore represents a single method invocation.
The synchronizer then sends these transactions to the server. Now, at the server, each
transaction can be interpreted as a single semantically coherent unit that represent a
method invocation on the client. The server inspects each transaction at synchronizer
endpoint and derives the corresponding application level method from it. For instance, a
Xydra Add command of an XObject with additional commands that add and set XField
values within one transaction could be translated to an application level method, e.g.
a method for creating a new instance of an todo-item with given parameters. When
the method is determined and it requires parameters to be passed on invocation, these
parameter values need to either be derivable from commands within the transaction or
already present on the server. In the former case, a lightweight method helper routine can
fetch the method parameter values from the transaction: For instance, it could look for a
command which adds an XField XValue that holds the description of the to-do item to be
created. When all parameters can be extracted, the method invocation is passed to the
server-side application layer for invocation.

In essence, the server-side execution of the method will generate the same changes to the
application data as the client already generated locally, provided the method invocation
was successful. There may be additional side effects on the overall application state that
should not be visible to client, e.g. administrative maintenance flags. This private data
will be stored outside of the scope of the client data model. The synchronizer will finally
synchronize the new state with the client.
The client can choose when he wants to synchronize his state with the server. This

allows for aggregating several method invocations and saves on dispensable round-trips
to the server. Furthermore, as synchronization can be delayed at will, the client can
continue to execute its application even though the client may be offline. For efficient
synchronization, an application developer can decide on a heuristic method on when the
client should synchronize, e.g. at a fixed time interval or after a certain number of method
invocations.

5.6 Interaction control flow
Following the previous description of the layers, the flow of application data in connection
with the layers is described next in a similar manner as the previously described walk-

42 5 Design of social web applications with Xydra

through of a traditional web application in Section 4.1.
As depicted in Figure 5.5, the client and server communicate via the synchronizer. The

synchronization takes place asynchronously to the rest of the interaction control flow.

1. Sending XCommands. When the synchronization starts on the client, the synchronizer
sends recently applied local XCommands to the server.

1. Receiving XCommands. After the server processed the XCommands, the resulting
XEvents are returned.

Client

Presentation layer

Persistence layer

Application layer

Server

Application layer

Persistence layer

Synchronizer

Persistence layer

1. XCommands

2. XEvents

Figure 5.5: SWAX application interaction flow between client and server

The XCommands that are transported by the synchronizer result from user interaction
with the application on the client. The interaction control flow on the client is depicted in
Figure 5.6 and is described as follows:

1. Method invocation. User interface components within the presentation layer allow the
user to specify input and to invoke application layer methods, e.g. by clicking a button.

2. Validation. The user input that is part of a method invocation is validated within the
application layer.

3. Processing. After the input is validated, the invoked application layer method is
executed as a XTransaction that is grouping XCommands. By grouping the changes in
a transaction, the method invocation semantics are preserved for later synchronization.
This processing step modifies the local state,e.g. the AppEntities and their corresponding
XEntities, of the application:

4. XCommands. During execution of the method, the XTransaction is applied on the
XModel within the persistence layer.

5. XEvents. The persistence layer returns resulting XEvents.

5.6 Interaction control flow 43

6. AppEvents. The application layer receives the XEvents and transform them to AppEvents.
The presentation layer is notified of these AppEvents and updates its view accordingly.
The result of the method invocation is now visible and the method invocation semantics
are stored in the persistence layer.

Persistence Layer

Application Layer

Presentation Layer

Client

4. XCommands 5. XEvents

6. AppEvents
1. Method
Invocation

2. Validation

3. Processing

Figure 5.6: SWAX application interaction control flow on the client

The synchronizer asynchronously synchronizes the state changes between the client and
server. It sends the client-side XTransactions that were the result of method invocations
to the server. The interaction control flow on the server is depicted in Figure 5.7:

1. Method invocation. The server interprets the XCommands that are grouped to XTrans-
actions and determines the application layer method that needs to be invoked on the
XModel. There can be multiple XTransactions being received and as described in Sec-
tion 5.5 each XTransaction corresponds to one application layer method. The methods
are invoked one after the other. In this case, only a single XTransaction and method
invocation is assumed. The server checks if the client is authorized to invoke each method.

2. Validation. The input contained in the XCommands is validated in respect to the
method that should be invoked for security reasons .

3. Processing. After successful validation, the application layer method is executed. This
step modifies the the server-side state of the XModel. The server-side method execution
can have additional side effects such as sending an email.

44 5 Design of social web applications with Xydra

4. XCommands. During execution, the XCommands are applied on the XModel within
the persistence layer.

5. XEvents. The persistence layer returns resulting XEvents. The XEvents are then
returned to the synchronizer for delivery to the client.

Persistence Layer

Application Layer

Server

4. XCommands 5. XEvents

1. Method
Invocation

2. Validation

3. Processing

Figure 5.7: SWAX application interaction control flow on the server

6 Implementation

This chapter describes the modeling of the blueprint for SWAX applications. It then
presents two prototype implementations of the to-do list application described in Sec-
tion 5.1.

6.1 Blueprint for SWAX applications
Figure 6.1 depicts the UML class diagram that illustrates the SWAX design with the
relationships of the classes and methods. The classes and their arrangement resemble the
key concepts of the application structure presented in Section 5.3.

Regarding the concept of separation of concerns, each of the three entities of the different
layers are arranged in three separate columns within Figure 6.1. For instance, the XEntities
of the persistence layer, namely XModel, XObject, and XField are vertically aligned in
one column. The next column contains the AppEntities of the application layer: the
AppModel, AppObject, and AppField. The widgets of the presentation layer, namely
ModelWidget, ObjectWidget, and FieldWidget are arranged in the rightmost column.
Within one column, the intra-layer relationship of entities, introduced as the nesting

concept, is illustrated. Regarding the nesting concept, the classes representing these entities
have composition relationships. Within the diagram the nesting concept is illustrated as
composition relationships that are drawn vertically in each column connecting the entities.
For example, an XModel has a composition relationship to XObjects. The multiplicity of
the composition is that one XModel contains zero or more XObjects. In addition to that,
as another composition illustrates, an XObject contains zero or more XFields, respectively.
Other corresponding composition relationships can be observed in the application layer
entities: between the AppModel and AppObject, or the AppObject and AppField. Finally,
the multiplicity of the composition relationships for the presentation layer entities is: one
ModelWidget to zero or more ObjectWidgets, and one ObjectWidget having zero or more
FieldWidgets.

45

46 6 Implementation

+getValue()
+setValue()
+getType()

-syncStateChangeHandlers
-valueChangeHandlers

AppField

+getSyncState()

«interface»
HasSyncState

+addValueChangeHandler()

«interface»
HasValueChangeHandlers

+addSyncStateChangeHandler()

«interface»
HasSyncStateChangeHandlers

+getValue()
+setValue()

-value

XField 11

-ComputedAppField

1

-AppField *

-syncStateChangeHandlers
-addRemoveHandlers

AppObject

-syncStateChangeHandlers
-AddRemoveHandlers

AppModel

XObject

1

*

XModel 11

1

*

1

*

1
*

11

-syncStateChangeHandler
-addRemoveHandler

ModelWidget

-syncStateChangeHandler
-addRemoveHandler

ObjectWidget

«uses»

«uses»

«uses»

-syncStateChangeHandler
-valueChangeHandler

FieldWidget

1

*

1

*

1

*

+addAddRemoveHandler()

«interface»
HasAddRemoveHandlers

Persistence layer Application layer Presentation layer

Figure 6.1: The UML class diagram illustrating the SWAX design.

In addition to the arrangements to columns representing the layers, the rows illustrate the
event propagation that represents the inter-layer relationship of entities. For instance, an
AppModel maintains a one-to-one composition relationship to an XModel. An AppObject
has a one-to-one composition relationship to an XObject and an AppField a one-to-one
relationship to an XField. The composition relationship is used as there is a strong
dependency between the entities of the application layer and their respective entities in the
persistence layer. In contrast, the entities of the presentation layer are only loosely coupled
with their corresponding application layer entities as the widgets solely listen for AppEvents
on the AppEntities. Therefore, the relationship is illustrated as dependencies instead of
compositions. For instance, the ModelWidget uses the AppModel, an ObjectWidget uses
an AppObject, and an FieldWidget uses an AppField.

For event propagation between the application layer and presentation layer to work, event
handlers and corresponding interfaces have been implemented. The ModelWidget and
ObjectWidget both have a syncStateChangeHandler that is notified of a SyncStateChange
AppEvent. Furthermore, they have handlers for the Add and Remove AppEvent. The

6.2 Prototypes 47

FieldWidget also has a syncStateChangeHandler but has no addRemoveHandler. Instead,
as FieldWidgets represent AppFields, which hold values, they have a valueChangeHandler
and are notified of ValueChange AppEvents. In order to indicate that the application layer
entities notify the widgets for the particular AppEvents, the HasAddRemoveHandlers,
HasSyncStateChangeHandlers and HasValueChangeHandlers interfaces have been defined,
which are implemented by the AppModel, AppObject and AppField. Furthermore,
the HasSyncState interface indicates, that an entity has a synchronization state. The
HasSyncStateChangeHandlers as well as the HasSyncState interface are implemented by
all three AppEntities. HasAddRemoveHandlers is implemented by the AppModel and
AppObject, and HasValueChangeHandlers is only implemented by an AppField.

Finally, an AppField can represent an XField, holds a value of a certain type and offers
methods to get and set this value. As illustrated in the UML diagram, AppFields can have a
one-to-many association relationship to other AppFields. This is how ComputedAppFields
are realized, which are AppField whose value is computed at runtime and is depended on
the value of other AppFields.

6.2 Prototypes
The first prototype called one-way synchronization is a commercial to-do list application
that uses the Xydra data model and its versioning capabilities for the data exchange
between client and server. The second prototype called Swaxodo is an experimental
implementation of the to-do list application similar to one-way synchronization but that
fully incorporates the SWAX applications design. As such, it represents itself as a type of
Rich Internet Applications (RIA) [RECC+12]. Both prototypes are implementations of
the collaborative to-do list application described in Section 5.1. They are written in the
Java programming language and the client-side component is compiled as a JavaScript web
application using the Google Web Toolkit. The server-side component is a Java application
that uses Xydra and is running on top of Google App Engine.

6.2.1 One-way synchronization
The one-way synchronization is a commercial application that implements the collaborative
to-do list with a partial implementation of the SWAX application design. The conceptual
interaction flow is depicted in Figure 6.2. The application uses a client-side Xydra XModel
for application data objects. The key difference to the Swaxodo implementation is that
synchronization takes place only in the direction from the server to the client. There
are two variants of the one-way synchronization prototype for further evaluation. The
difference is that one variant stores the Xydra XModel in local storage and the other
variant does not leverage the local storage. The variant without local storage support
is technically representative of commonly used web applications utilizing asynchronous
requests (AJAX) [Pau05]. The application flow is as follows:

48 6 Implementation

1. When the user interacts with the application, a request is sent to the server. Along
the request, the client submits its highest known revision number of the XModel.

2. When processing the request at the application layer, XCommands are issued on the
XModel which increases its revision number. The formerly received client revision
number of the XModel enables the server to determine the delta changes, i.e. the
XEvents that happened from the highest known client revision number up to the
latest server-side revision number.

3. The XCommands result in XEvents on the server-side XModel.

4. These resulting XEvents are returned to the client.

5. The client updates its local XModel with the returned XEvents. In the local storage
variant of the prototype it stores the updated XModel in local storage.

6. The client finally displays the new to-do list that the XModel represents.

Figure 6.2: Interaction flow of the one-way synchronization application

6.2.2 Two-way synchronization with Swaxodo
Swaxodo is an experimental prototype implementation of the collaborative to-do list built
as a SWAX application which serves as a full realization of the SWAX design concept.
The key difference to the one-way synchronization implementation is that Swaxodo is a
complete realization of the SWAX design concept, e.g. it provides a client-side presentation,
application, and persistence layer. Furthermore, it fully utilizes the Xydra synchronizer.
This means, that in contrast to the one-way synchronization application that only received
XEvents from the server and sent application level request in the opposite direction from
the client to the server, Swaxodo is a two-way synchronization application. In the following,
a typical application flow is described:

6.2 Prototypes 49

1. When the user interacts with the application, the application level methods the
user invokes are no longer sent to the server as requests but they are rather locally
processed within the client-side application layer.

2. When locally processing the user interaction at the application layer, the application
layer method validates the input and issues corresponding XCommands on the
XModel. These XCommands are grouped into transactions that are corresponding to
application level methods. The issued XCommands result in a higher revision number
of the XModel. Each applied XCommand results in a XEvent that the application
layer is notified of. The changed entities have a preliminary synchronization state
and the XModel is persisted to local storage.

3. The result of the processing of the user interaction is immediately shown in the
application user interface.

4. Asynchronously, at a fixed time interval or after a number of interactions, the
synchronizer sends the local changes that were grouped into transactions to the
server.

5. The server authorizes the client and interprets as well as validates the transactions.
The client changes are merged with the server-side state of the XModel. Conflicting
XCommands are detected. Further server-side XCommands are can be applied to
the XModel.

6. The XCommands result in XEvents being returned by the synchronizer from the
server-side state of the XModel.

7. The client updates its local XModel with the returned XEvents and stores the
XModel in local storage.

8. The application layer is notified of the returned XEvents. The formerly preliminary
local changes now have a persisted synchronization state.

9. The persisted synchronization state is immediately shown in the application user in-
terface. Further received changes from the server may result in additional components
to be shown.

As a summary, the application level methods the user invokes are no longer sent to the
server as requests but they are rather locally processed within the client-side application
layer resulting in changes within the client-side persistence layer. The synchronizer
then takes these local changes grouped to transactions and sends them to the server
as XCommands. The server executes the XCommands and returns resulting XEvents.
The direction from the server to the client is similar to the one-way synchronization
implementation. The interaction flow of Swaxodo is a direct implementation of the control
flow illustrated in Section 5.6.

7 Evaluation and Related Work

In this chapter the design of social web applications based on Xydra (SWAX) is evaluated.
Given each of the requirements of social web applications described in Chapter 3, this
chapter discusses to what extent SWAX applications meet the requirements. Subject to
this discussion are the two prototype implementations introduced in Section 6.2. The
chapter continues with cost estimations of SWAX applications in comparison with other
approaches. The chapter concludes with a review of other frameworks comparable with
SWAX and a feature comparison between them.

7.1 Comparison with requirements
This section discusses to what extent SWAX applications meet each of the requirements
described in Chapter 3.

Scalability
SWAX applications are primarily running on the client with the server merely functioning
as a data broker and persistence layer. This is comparable to the deployment and scalability
characteristics of an installable desktop application. Therefore, the client-side component
is negligible in terms of scalability, because each user of the application runs the application
locally and provides his own computational resources.

However, scalability of the server-side component of the SWAX application is of impor-
tance, as it is largely affected by the number of users and application items. In particular
sharing items between users in social web applications is a critical component, as the num-
ber of possible user-to-user relationships, i.e. those relationships where items are shared,
grows in O(n2) with n being the number of users. In addition to that, the popularity of
single items or users often times follows a power law distribution so the system must be
able to handle load peaks and bursts in distribution of items.
The server-side component of SWAX applications is based on Xydra utilizing the

Google App Engine. Google App Engine allows the dynamic addition of computational
resources, called instances, when the load of the application increases. In addition to
that, it provides a scalable datastore. Xydra allows applications to utilize the dynamic
instances and scalable datastore feature and provides functionality for concurrent execution
of application instances. Therefore, it is possible to write scalable Xydra applications on
top of Google App Engine.

51

52 7 Evaluation and Related Work

As a result, SWAX applications provide scalability in respect to the number of application
users and data items and meet the requirement.

Consistency
The Xydra synchronizer is capable of providing eventual consistency between client and
server as described in Section 2.3. The server thereby has the role of the master that can
detect conflicting commands/updates submitted by the client and reject them. The final
state on the server is propagated to the client. Therefore, SWAX applications meet the
consistency requirement.

Availability
As per design, SWAX applications can be used even when the user is experiencing
intermittent connectivity, i.e. is offline, or in the case of server outages. The presence of
a presentation, application, and persistence layer render it possible that the client-side
application can be used independently of external factors such as server outages or loss of
connection to the server. In literature, this is known as optimistic replication [GH96] and
has been demonstrated by [SKK+90].

SWAX applications can even be used across browser restarts. Changes to the application
state which have been applied locally are persisted by SWAX applications within the
browser’s local storage. A similar approach has been demonstrated by [Can10].

As soon as the server can be reached again by the client, the changes are synchronized
with the server. However, the availability of application functionality sometimes is restricted
or limited. For instance, features that inherently require a server-side execution such as
sending an email can only be queued locally for later execution. Nonetheless, principle
functionality can be provided and the user can continue to use the application while the
progress of application state is persisted locally.
Therefore, SWAX applications meet the availability requirement.

Synchronization, conflict detection and resolution
SWAX applications use the Xydra synchronizer in order to synchronize the client-side
state with the server-side state. In this process, Xydra can detect client changes that are in
conflict and are rejected on the server. Therefore, client changes can either be successfully
applied or can fail due to a conflict. Conflict detection happens on the server and is
propagated to the client. Client-side application code can include application specific
conflict resolution routines.
SWAX applications can use synchronization callbacks in order to provide a client-side

conflict resolution. Concrete conflict resolution techniques are not part of the SWAX design
as they are often application specific. Yet, Xydra enables custom resolution techniques to
be adapted by the application developer.

7.1 Comparison with requirements 53

As a summary, SWAX applications meet the synchronization requirement. Conflicts are
detected at the server-side. Conflict resolution techniques, however, are unadressed, but
common resolution techniques are compatible with SWAX.

Responsiveness
Due to the client-side execution of the business logic, the results of user interactions can
preliminarily be determined locally. Therefore, no server round-trip is necessary in order
to complete an action and to show its preliminary results. Consequently, the user perceives
the application as being executed locally with no latency. Effectively, responsiveness is
good and is mostly limited by browser execution performance. The savings in round-trips
are discussed in Section 7.2.
As a result, SWAX applications meet the responsiveness requirement.

Cost-effectiveness
Cost-effectiveness in regards to the initial development of SWAX applications is rendered
possible due to the assistance in development by powerful tools like the Eclipse IDE and
the Google Web Toolkit. Java has an advantage over JavaScript in development as it is a
statically typed language.
SWAX applications allow the reuse of application layer code on both client and server

which can lower development time and costs. Furthermore, as SWAX applications are
regular web applications the application as well as new versions can easily be deployed
whenever the client requests the web application.

SWAX applications incur costs in terms of computational resources, network usage,
and storage. The client-side part of SWAX applications saves costs for computational
resources on the side of the application provider. As the application and presentation layer
are present on the client, the server is unburdened from the computational cost-incurring
charge of that part. Still, a part of the application layer and also the persistence layer
remain on the server and incur costs on computational resources and storage. The savings
on computational costs are part of a cost estimation in Section 7.2.3.

SWAX applications help in minimizing traffic costs as the synchronizer persists applica-
tion data locally and only submits and receives changes and not the entire application
data. Furthermore, the changes do not include any presentational markup which also
helps in minimizing traffic. The network usage of SWAX applications is discussed in more
detail in Section 7.2.
In summary, SWAX applications provide cost-effectiveness in regards to development,

maintenance and deployment of applications. The SWAX design allows economic usage
of computational, storage, and network resources. The cost-effectiveness requirement is
fulfilled.

54 7 Evaluation and Related Work

Device independence
The Google Web Toolkit allows to compile SWAX applications to packaged JavaScript
applications which are compatible with most modern Web browser environments including
mobile devices. SWAX applications can detect supported features like local storage support
and adapt to the availability of these features.
Consequently, the usage of the Google Web Toolkit allows SWAX applications to be

device independent.

Data versioning and history
As discussed in Section 2.2, Xydra supports versioning of its data model and keeps a
changelog with increasing version numbers as a history on each entity.
SWAX applications can use Xydra support for versioning and history, as such the

requirement is fulfilled.

Security
The security of SWAX applications is primarily a concern of the server-side application
layer as the synchronizer receives client changes as input that cannot be trusted. A key
benefit of a server-side application layer is that the business logic is running in a privileged
environment that can be trusted as opposed to the client. The application layer provides
functionality to check the structure and interpret the application level method the client
changes do represent. After determining the method and input parameters, the application
layer can check the access control rights of the client. The initial authentication of the
client is orthogonal to the design of SWAX applications. However, common methods for
authentication, such as HTTP authentication, are compatible to SWAX.
Consequently, SWAX applications support security for authorization and validation

at the server-side. Authentication of the client is not part of the design, but common
techniques are SWAX compatible. Therefore SWAX applications meet the security
requirement.

User interface and model-view binding
User interfaces in SWAX applications can be built using widgets of the presentation layer
(see 5.3.3). The widgets can be bound to application layer data models. This view binding
allows the user interface to instantly reflect changes made to the application data model.
These changes can either be in a preliminary or persistent synchronization state and the
widgets can give visual feedback on the state.

Therefore, SWAX applications provide widgets for the user interface that support model-
view binding. The synchronization state of the application data is represented by the
widgets. The user interface and model-view binding requirement is fulfilled.

7.2 Cost estimations 55

Summary
SWAX applications meet the requirements as described in Chapter 3 to a large degree.
SWAX applications are scalable and provide availability during loss of connection or server
outages. The client-side execution makes SWAX applications responsive. Furthermore,
applications can be developed, operated and maintained in a cost-effective way. In
particular, SWAX minimizes traffic and computational costs on behalf of the application
provider. SWAX provides widgets for the user interface including model-view binding.
Provided by the Google Web Toolkit, SWAX applications are device independent and run
in any modern browser environment.
Provided by Xydra, SWAX also supports versioning and history on application data.

SWAX allows the authorization and validation of changes during synchronization and
conflicts can be detected.
Authentication and conflict resolution, however, are unaddressed in the SWAX design.

Yet, compatible techniques to these features can be implemented by an application
developer.

In relation to the disadvantages of the traditional approach as discussed in Section 4.1, the
important benefits of SWAX applications are the better responsiveness, higher scalability,
availability, and the decreased costs. A more detailed evaluation of the reduction in
round-trips and data transfer sizes and the resulting responsiveness as well as decreased
costs is subject to the next section.

7.2 Cost estimations
According to the analysis of network usage and round-trips of a traditional web application
in Section 4.1, this section analyzes the one-way synchronization application (see 6.2.1), a
partly realization of the SWAX design, and Swaxodo (see 6.2.2), a full realization of the
SWAX design, in a similar manner.

7.2.1 One-way synchronization
As an improvement to the traditional web application, in the one-way synchronization
application the page is only requested once and does only contain the framing presentational
markup without the actual application data. There are two variants of the one-way
synchronization approach: One variant leverages the local storage capability of the client
whereas the second variant does not utilize local storage. The latter variant is representative
of web applications commonly used today.
Right after the initial page load the application data is received as a Xydra XModel

from the server via an asynchronous JavaScript request (AJAX). The initial response
contains the full state of the application data, e.g. the entire to-do list, leaving out the
presentational markup. Each subsequent response only contains the data that is relevant
to the request, e.g. a single task.

56 7 Evaluation and Related Work

The presentation layer resides on the client and no longer on the server. The presentation
layer uses the application data and renders a corresponding view from it. This way the
page is dynamically adapted on each interaction.
According to the key difference to the traditional scenario, the page markup is only

loaded once and each subsequent interaction takes places through asynchronous JavaScript
requests. Each JavaScript request only returns the task data td, leaving out the markup
to render a task tm. The task markup is only transferred once at the initial page load.
The variant with local storage support does only need to request the entire to-do list

once as the to-do list thereafter is permanently stored in the local storage.
Therefore, the total size of the initial page p, assuming an empty local storage, in bytes

is:

p = b + tm + n ∗ td (7.1)

For the variant with local storage support and assuming that the to-do list is already
present in local storage, the size of the initial page p∗ is:

p∗ = b + tm (7.2)

As such, the total amount of bytes for all k interactions is:

s = p + (k − 1)td (7.3)

As each interaction requires a round-trip, the number of round-trips for k interaction is:

iRT = k (7.4)

7.2.2 Swaxodo
The main difference of Swaxodo in comparison with the one-way synchronization approach
is the offline availability of applications. As a result, dispensable round-trips to the server
can be saved.

Initially, assuming an empty local storage the to-do list needs to be received once entirely.
Like the one-way synchronization approach the bytes transferred can be stated as:

p = b + tm + n ∗ td (7.5)

Assuming that the to-do list is already present in local storage, the size of the initial page
p∗ similarly to the one-way synchronization with local storage approach is:

p∗ = b + tm (7.6)

7.2 Cost estimations 57

And similarly, the total amount of bytes for all k interactions is:

s = p + (k − 1)td (7.7)

As Swaxodo permanently stores application data in local storage and is able to rebuild
the application state after browser restarts, which essentially is part of the offline capability,
no round-trip to the server is necessary but can optionally be performed to fetch new
changes from the server. Therefore, no data transfer needs to take place after a browser
restart. Typically though, after a browser restart the page according the formular p∗ will
be loaded.
Swaxodo applications do not require an immediate round-trip to the server in order to

display results of an interaction, as the application is executing locally. Round-trips are
only necessary when the client synchronizes its state with the server, which is happening
asynchronously to the user interaction and can be delayed until after k interactions. The
synchronizer can aggregate k changes made by the client or within a certain time interval,
to avoid dispensable round-trips. The strategy that is used to synchronize aggregated
interactions can be customized. In this case it is assumed that one synchronization takes
place at beginning of a page load and a second synchronization after k interactions.
Therefore, the number of required round-trips for k interactions with delayed synchro-

nization is simply one (optional) round-trip at the beginning of a session of k interactions
and one round-trip at the end of a session.

jRT = 2 (7.8)

7.2.3 Example scenario and costs
This section presents an estimated calculation and comparison on basis of the previously
discussed formulas among the three approaches. With the help of an example scenario,
the calculations and estimations of data transfer sizes, round-trips, and service provider
costs are determined. The estimated application parameters are derived from benchmarks
conducted on real-world data from the one-way synchronization approach. Furthermore,
the number of users and the average number of items per user is derived from the estimated
figures on social web applications given in Table 3.1.

Session. Part of the following scenario is the notion of sessions. A session is a sequence
of n consecutive interactions a user can make without closing the browser. For instance,
a session has ten interactions when the user creates seven tasks, delegates one task to
someone else and marks two of them as done in a row.

Scenario. The example scenario is based on the collaborative to-do list application (see 5.1).
The application is assumed to be used by 1,000,000 users with 500 tasks per user. During

58 7 Evaluation and Related Work

a session, the user is presented a page with 50 tasks as a subset of the total number of
tasks. The values of the parameters are as follows:

Parameter Description Size
m #users 1.000.000
np #tasks per page 50
ntotal average total #tasks per user 500
b Page markup size 60,000 bytes
tm Task markup size 2,700 bytes
td Tasks data size 300 bytes

Table 7.1: Parameters of the to-do list application scenario1

Data transfer sizes

Given these parameters, the figures are estimated according to four consecutive sessions
(S0, S10,S100 and S1000) with increased numbers of interactions (0 - 1000 interactions
respectively). Session S0 is the initial page load with an empty local storage. Session
S1000 with 1000 interactions is a theoretical example for illustration purposes and has little
practical relevance. At the end of each session, a browser restart is assumed in order to
illustrate the effect of the local storage usage.

Given the formerly discussed formulas, following figures on data transfer sizes, without
utilizing compression, for the three approaches are determined.

Approach Session
[bytes]

S0 S10 S100 S1000

Traditional approach 210,000 2,100,000 21,000,000 210,000,000
One-way synchronization w/o local storage 77,700 80,700 107,700 377,700
One-way synchronization with local storage 77,700 65,700 92,700 362,700
Swaxodo 77,700 65,700 92,700 362,700

Table 7.2: Data transfer sizes of each session for a traditional web application, the one-
way synchronization approach and Swaxodo.

The data transfer sizes for the traditional approach grow linearly in the amount of
interactions. The one-way synchronization approach and Swaxodo have the same transfer
size for the initial page. The one-way synchronization approach without local storage
needs to reload the tasks at the beginning of each session, therefore the data transfer sizes
for each session have a factor added. Most notably, one-way synchronization with local

1 The sizes of page and task markup as well as tasks data sizes were measured in benchmarks conducted
on real-world data from the one-way synchronization approach.

7.2 Cost estimations 59

storage and Swaxodo, which also leverages the local storage, do not need to request the
entire todo-list after a browser restart. Therefore, savings in data transfer size for one-way
synchronization with local storage and Swaxodo can be observed for the session S10 and
the subsequent sessions. Session S10 is reasonably the most common kind of session a user
will perform. For this particular scenario in session S10, 18.6% in data transfer sizes are
saved when comparing one-way synchronization with local storage and Swaxodo to the
one-way synchronization approach without local storage.

Round-trips

Similar to the data transfer sizes, the number of round-trips for the three approaches is
determined in the following table. In this scenario, Swaxodo will synchronize its application
state with one round-trip for every ten interactions.

Approach #
Round-
trips

S0 S10 S100 S1000

Traditional approach 1 10 100 1,000
One-way synchronization w/o local storage 1 10 100 1,000
One-way synchronization with local storage 1 10 100 1,000
Swaxodo 1 2 10 100

Table 7.3: Round-trips of each session for a traditional web application, the one-way
synchronization approach and Swaxodo.

As Table 7.3 shows, all approaches but Swaxodo use a round-trip to the server for each
interaction. In contrast, Swaxodo allows the application to execute locally without the
need for a round-trip. Swaxodo can use a heuristic method to determine when a round-trip
should be performed and in this scenario, every ten interactions a round-trip is performed
to synchronize the state. In principle, SWAX applications can be used offline and can delay
a synchronization round-trip as long as the client eventually can establish a connection
to the server. The trade-off hereby is that fewer round-trips increase the probability of
conflicts.

Cloud service costs

In the following section the costs of computation, bandwidth, and storage are determined
for the scenario for all three approaches. The cost are determined on the basis of the
pricing model of the Google App Engine that is given in Section 4.2.

Storage costs. The costs for storage are roughly the same for all three approaches, as the
server-side persistence of data is the same for all approaches. They are therefore negligible
for this evaluation and only given as an indication. The scenario leads to storage costs of

60 7 Evaluation and Related Work

$36/month. Assuming that each interaction yields about 10 write operations, the costs for
storage access are about $1000/month.

Bandwidth costs. The costs for bandwidth, however, are different for the approaches.
Assuming that an average user performs 10 sessions each with 10 interactions (similar to
S10) per month, the costs for bandwidth are as follows:

Approach Bandwidth
costs

Traditional approach $2520/month
One-way synchronization w/o local storage $96.84/month
One-way synchronization with local storage $78.84/month
Swaxodo $78.84/month

Table 7.4: Bandwidth costs for a traditional web application, the one-way synchronization
approach, and Swaxodo.

As can be seen in Table 7.4, the cost for bandwidth with the traditional approach are
prohibitively high. Therefore, today, the traditional approach is rarely used in social web
applications. Approaches similar to the one-way synchronization w/o local storage are
more common in practice.

Computational costs. The computational costs are determined by the number of interac-
tions and the required time to process that request on the server. An average response
time of 200ms, a uniformly distributed load and an average usage of 10 sessions each
with 10 interactions per month per user is assumed for the calculation in order to derive
indicative computational costs.

Approach Computational
costs

Traditional approach $444.44/month
One-way synchronization w/o local storage $444.44/month
One-way synchronization with local storage $444.44/month
Swaxodo $88.88/month

Table 7.5: Computational costs for a traditional web application, the one-way synchroniza-
tion approach, and Swaxodo.

As Table 7.5 shows, all approaches but Swaxodo incur the same computational costs per
month as they all use a round-trip to the server for each interaction. Swaxodo, however,
saves dispensable round-trips and therefore incurs lower computational costs. The savings
are largely dependent on the used synchronization heuristic, e.g. after a fixed time interval
or after ten interactions.

7.3 Comparison with other frameworks 61

Overall, the driving cost factors for this scenario are storage access and cost of compu-
tation. Even though there are no improvements in reducing the costs regarding storage
and storage access, Swaxodo and the one-way synchronization with local storage approach
allow savings in bandwidth costs compared to one-way synchronization without local
storage. More importantly, the reduction of the computational costs which has a large
overall effect on savings is enabled by Swaxodo as round-trips are minimized. Table 7.6
summarizes the overall costs in this example scenario.

Approach Total costs
Traditional approach $4000.44/month
One-way synchronization w/o local storage $1577.28/month
One-way synchronization with local storage $1559.28/month
Swaxodo $1203.72/month

Table 7.6: Overall costs including storage, computation, and bandwidth for a traditional
web application, the one-way synchronization approach, and Swaxodo.

7.2.4 Summary
Swaxodo as an example for an experimental SWAX application provides significant savings
in data transfer sizes and needed round-trips. In respect to the data transfer sizes, Swaxodo
and one-way synchronization with local storage reduce data transfer sizes by about 20%
in comparison with other approaches for common use cases.
The number of required round-trips is linear in the number of interactions for all

approaches but Swaxodo. With Swaxodo, it is subject to a chosen heuristic method. In
the given scenario, round-trips were reduced by a factor of 5 - 10. The heuristic method
used and the resulting reduction depends on the particular use case and a trade-off exists
regarding potential conflicts.

As a result of the reduction in data transfer size and round-trips, significant savings on
behalf of the application provider are possible. Therein, Swaxodo is the only solution that
allows the reduction of a driving cost factor of computation. In this example computational
costs are reduced by a factor of 5. The factor is determined by the aggregation of round-trips
according to the synchronization heuristic, e.g.: factor 5 - 10.

7.3 Comparison with other frameworks
This section discusses the related web application frameworks Firebase, Meteor, and Derby.
Firebase, Meteor, and Derby present complete solutions for building web applications
with synchronization. They have recently been introduced to the market, are under active
development and received a remarkable coverage among the tech-scene. Thus they present
themselves as popular representatives among related frameworks. On grounds of this

62 7 Evaluation and Related Work

relevance, Firebase, Meteor, and Derby have been chosen to be subject to the comparison
with SWAX within the remainder of this section.

Firebase
Firebase1 is a commercial cloud service provider that allows client-side web applications
to store and retrieve data on the Firebase backend as well as exchange data with other
client instances. Firebase provides an API with a focus on real-time synchronization of
changed data objects.

Persistence layer. Data records in Firebase are schema-less and can be grouped to lists.
Firebase allows the issuing of queries against the available data objects. Firebase applies
changes to data objects locally and asynchronously propagates these changes to the
Firebase backend and from there to other client instances. Changes to data objects
produce new snapshots of these data objects. In order to set a value of a data object,
Firebase offers a Set method that overwrites any value regardless of its previous state. In
order to provide concurrent updates of data objects with transaction semantics, Firebase
offers a Transaction method. In principle, Firebase applications can be used offline.

Application layer. Firebase can be used with most modern browsers including mobile
browsers and is installed by including a JavaScript file. Firebase applications are executed
exclusively on the client. Firebase offers a persistence layer for applications but the design
of the application layer is up to the application developer.

Presentation layer. Firebase does not provide a way to bind the data to a view itself,
but it is compatible to other third party solutions for model-view binding. At the time
of writing, Firebase doesn’t offer authentication and authorization of clients. Instead,
Firebase states that all data within Firebase is publicly accessible and access control is
planned to be added in a future version. By design, there is no server-side application
layer for the application developer to deploy.

Comparison with SWAX. Similar to SWAX, Firebase does provide synchronization of
changes with snapshots and transactions at the persistence layer as well as an offline
capability. The data model, however is schema-less and queries can be issued whereas
SWAX applications use a application specific schema and provide no queries. Firebase
provides a focus on real-time synchronization of changes. Synchronization with SWAX
applications take place at fixed intervals or by other strategies. A key difference to SWAX
is that Firebase does not offer a server-side application layer and therefore it is not possible
to execute parts of the application in a privileged server-side environment. This makes it

1 Firebase, http://www.firebase.com accessed July 19, 2012

7.3 Comparison with other frameworks 63

difficult for Firebase to provide security whereas SWAX applications can authorize and
validate data at the server-side. Furthermore, Firebase does not provide a presentation
layer. SWAX provides widgets with a binding on the application data model within the
presentation layer.

Overall, Firebase does provide a powerful persistence layer with real-time synchronization
but is missing features in the other layers when compared to SWAX applications.

Meteor
Meteor1 is an open-source web application platform with a lightweight server component
using Node.js and a focus on a client-side application execution.

Persistence layer. Meteor provides a persistence layer as a schema-less server-side key-value
store. The client browser has an in-memory cached database with a subset of the same
API as the server database. This client-side caching database replicates data objects
the client is interested in. Similar to Firebase, data objects can be grouped to lists and
queries can be issued against the database. Read and writes of data objects are executed
on the local cache first and are asynchronously synchronized with the server. This is
self-described as latency compensation as the application execution can make progress
without a synchronous round-trip to the server. Meteor has no notion of snapshots or
versioning of data and only provides write access to data in a way that will overwrite any
previous object value. It is the responsibility of the application developer to detect and
resolve concurrent updates and provide versioning of data objects. The persistence layer
allows applications to be executed while the client is offline.

Application layer. Meteor allows the definition of callbacks on the database API methods
that allow the client to react on the outcome of the synchronization with the server.
Customized server-side application code can in principle provide access control and
validation, because application code on the server is running in a privileged environment.
Implementing access control and validation is the obligation of the application developer.
As Meteor applications are written in JavaScript for the client and the server-side they
are compatible with any modern browser environment including mobile platforms.

Presentation layer. In addition to the functionality concerning the persistence layer, Meteor
provides a comprehensive model-view binding. Templates for the view can be defined
with placeholders for data objects that automatically update when the model changes.
The view is also updated when the template changes. The framework offers a packaging
mechanism that allows to include popular third-party modules to ease development of
applications.

1 Meteor, http://meteor.com accessed July 19, 2012

64 7 Evaluation and Related Work

Meteor is still in an early stage of development and currently lacks a sophisticated
access control mechanism. The authors claim to add authentication and authorization in
a planned future release.

Comparison with SWAX. Within the persistence layer, Meteor in contrast to SWAX
does not provide snapshots or versioning of data objects, has a schema-less data model,
and does not detect conflicts. It, however, provides queries opposed to SWAX. Both
provide asynchronous synchronization of client-side and server-side state. Similar to SWAX,
Meteor has a server-side application layer that can be used to authorize clients and validate
application data as well as execute server-side only functionality like sending emails. In
addition to this, application code is reused on client and server. The presentation layer in
Meteor provides similar functionality as SWAX.

Derby
Derby1 is an open-source model-view controller framework similar to Meteor with a focus
on real-time synchronization and offline capability of client-side browser applications.
Applications are written in JavaScript such that code can be reused on the server-side in
Node.js as well as the browser.

Persistence layer. Derby’s persistence functionality uses Racer, a real-time model synchro-
nization engine that can permanently store data to a MongoDB key-value store at the
server-side. Racer provides synchronization features with a selection of conflict resolution
techniques, e.g. Operational Transformation and Diff-match patch. In order to facilitate
conflict resolution, Racer makes use of transactions and versioning. The conflict resolution
functionality supports Derby applications to also work offline. Like Meteor, common model
access methods including queries are shared between the client and server and callbacks
on access methods can be defined.

Application layer. Derby organizes models into hierarchical namespaces called paths which
help to structure and access models and to declare private attributes that are not synced.

Presentation layer. Derby provides model-view binding and templating of the user interface.
Moreover, views which are determined by routes can be rendered server-side which improves
the initial load time of the application. It also gives non JavaScript-enabled clients, e.g.
search engines, access to the application. Derby itself does not support access control with
authentication or authorization and validation of a model. It is the responsibility of the
application developer to implement this functionality within the privileged application
environment on the server.

1 Derby, http://derbyjs.com accessed July 19, 2012

7.3 Comparison with other frameworks 65

Derby is currently alpha software and its model conflict detection and resolution is
self-described in a preliminary state. The authors state that it is undergoing major
development.

Comparison with SWAX. Derby’s strength lies within the persistence layer conflict detection
and resolution functionality. Conflict resolution is not a part of SWAX. Like with SWAX,
application data is synchronized, but in real-time whereas SWAX synchronizes at fixed
intervals or uses other strategies. Like SWAX, Derby has a server-side application layer,
but authorization and validation unlike SWAX are orthogonal to Derby. A key difference
to SWAX in the presentation layer is that Derby allows to render a view on the server.
The model-view binding functionality, however, is comparable to SWAX.

Summary
Firebase, Meteor, and Derby are three frameworks with similar goals and feature set as
SWAX. Firebase has a slightly different focus on the client, as a server-side application layer
is missing. Derby and Meteor have a similar architecture and functionality in common.
Table 7.7 summarizes the feature comparison of the frameworks.

66 7 Evaluation and Related Work

Description Firebase Meteor Derby SWAX
R1 Scalability +++ +++ +++ +++
R2 Consistency +++ +++ +++ +++
Hierarchical model - - ++ +++
R3 Offline availability +++ +++ +++ +++
R4 Synchronization +++ +++ +++ +++
R4 Conflict detection ++ - +++ +
R4 Conflict resolution - - +++ -
R5 Responsiveness +++ +++ +++ +++
R6 Device independence +++ +++ +++ +++
R7 Cost-effectiveness +++ +++ +++ +++
Privileged environment - +++ +++ +++
Remote method invocation - +++ +++ +++
Queries +++ +++ +++ -
Transactions +++ - +++ +++
R8 Versioning ++ - - +++
R9 Authentication - - + +
R9 Authorization - - + +
R9 Validation - + + +++
R10 Model-view-binding & Templating - +++ +++ +++
Server-side rendering - - +++ -

Table 7.7: Feature comparison of Firebase, Meteor, Derby and SWAX

The frameworks are all under intensive, active development. A main issue of current
development among the frameworks is authentication and authorization of clients as well
as validation of the data. This is particular important as large parts of the application
run on the client and a malicious client could alter this part and the data in order to
compromise security. SWAX allows to validate data and has support for authorization.
SWAX is compatible to common authentication methods such as cookie-authenticated
sessions.
Firebase, Meteor, and Derby support queries on data objects. Providing queries and

maintaining scalability is a challenge and it remains to be seen whether the frameworks’
query functionality scale up to the size of popular social web applications. Queries are not
part of Xydra currently and therefore are not provided by SWAX.

Even though Derby supports common solutions for conflict resolution, in practice, it is
unclear whether these solutions are suitable for generally maintaining consistency of the
data because the technologies are partly heuristics or need complex customization for a
specific use case. In principle, SWAX would be compatible with customized implementa-

7.4 Summary 67

tions of conflict resolution techniques, but they are not part of the current design for their
lack of generality.
One differentiating feature for Derby is its server-side rendering of pages, which is

reducing the initial page load time. This is not part of SWAX but as SWAX focuses on
offline availability of the application, initial page loads are less frequent.
SWAX has a focus on offline availability of the application, including browser restarts.

This is partly realized through permanently storing the application state to local storage.
The other frameworks would in principle be compatible with a similar approach, but they
are not providing it as part of their current functionality.
All in all, the strength of SWAX lies in its offline availability of the application and

the server-side validation of data. Furthermore, it uses a hierarchical data model with
versioning and transactions provided by Xydra. Other functionality such as model-view
binding and cross-platform compatibility that are in common with the related frameworks
render SWAX a competitive solution in building social web applications.

7.4 Summary
SWAX applications are to a large degree in compliance with the requirements of social
web applications. Important benefits of SWAX are the responsiveness, scalability and
offline availability as well as the cost-effectiveness of applications.

As the the costs evaluation has shown, SWAX significantly reduces the bandwidth and
more importantly computational costs on behalf of the application provider.
In regards to the comparison with related frameworks, SWAX presents itself as a

competitive solution.

8 Conclusion and Outlook

This chapter gives a resume of the solution and findings presented in this work and a
future outlook.

8.1 Summary
Chapter 1 introduced the problem of building social web applications. It presented the goal
of this work: designing and evaluating a new approach in building social web applications
based on Xydra in a cost-effective way.
Chapter 2 gave a brief overview on social web applications. In this chapter a compre-

hensive discussion of the Xydra framework was given and the replication functionality of
the Xydra synchronizer was characterized. This is likely the first overview of Xydra in the
academic literature. The chapter closed with an introduction to basic technologies used.
Chapter 3 listed requirements for social web applications. Therein, scalability, respon-

siveness, and cost-effectiveness have been presented as important requirements.
Chapter 4 analyzed short-comings of traditional web applications and gave an analysis

on pricing of cloud-service providers.
Chapter 5 presented the design of SWAX. The design of SWAX is a central part of

this work. The overall architecture and detailed description of the SWAX application
structure was shown. The design was illustrated with the help of a collaborative to-do list
application as an example for a social web application.

Chapter 6 gave an overview of two implementations of the collaborative to-do list appli-
cation. The major part of that chapter described the experimental Swaxodo application.
Swaxodo is a reference implementation that was used to evaluate the SWAX design.
Chapter 7 evaluated SWAX in three ways. First, it was determined, whether SWAX

meets the requirements of social web applications. Second, with the help of Swaxodo,
data transfer sizes and round-trips as two important factors for cost-effectiveness and
responsiveness were measured and discussed. Third, SWAX was compared with related
solutions.

8.2 Conclusion
The goal of this work was to evaluate the Xydra framework for social web applications.
This work presented the SWAX blueprint design, the main contribution of this work
that uses Xydra. SWAX meets the requirements of social web applications to a large

69

70 8 Conclusion and Outlook

degree as shown in the evaluation on the basis of a reference implementation. The key
benefits are that SWAX applications are responsive, work offline, can easily be developed
thanks to the blueprint design and are overall cost-effective as data transfer sizes are
small and dispensable round-trips are avoided. A limitation of Swax in comparison with
other solutions is the lack of queries on the data model. Unaddressed in this work are
ways of resolving conflicts. Yet, resolving conflicts in a generic way remains an open issue
in the data synchronization domain. Often times, customized strategies are required as
more general approaches often rely on heuristics which can be prone to errors. Swax is in
principle compatible to customized resolution techniques. Furthermore, authentication of
the client is not part of this work, but commonly applied techniques such as cookie-based
authentication are possible. According to the results of the evaluation on the basis of
the Swaxodo prototype implementation, cost estimations and the comparison with other
related frameworks, it can be concluded that Xydra is well suited for building social web
applications.

8.3 Future work
The suitability of Xydra for social web applications raises the immediate question whether
Xydra is also suitable for building of desktop applications. Xydra with its synchro-
nization capability presents itself as a promising candidate for a more generic desktop
synchronization solution.
Furthermore, it would be interesting to evaluate solutions to extend the current syn-

chronization functionality to also support real-time synchronization of data objects.
Finally, with the advent of radically new browser technologies such as peer-to-peer

communication it remains to be seen to what extent Xydra can be used to manage and
synchronize data on the basis of peer-to-peer replication.

Bibliography

[ACKM10] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Concepts,
Architectures and Applications, 1st ed. Springer Publishing Company,
Incorporated, 2010.

[BE07] D. Boyd and N. B. Ellison, “Social network sites: Definition, history, and
scholarship,” Journal of Computer-Mediated Communication, vol. 13, no.
1-2, Nov. 2007. [Online]. Available: http://jcmc.indiana.edu/vol13/issue1/
boyd.ellison.html

[Bre12] E. Brewer, “Cap twelve years later: How the "rules" have changed,” Computer,
vol. 45, no. 2, pp. 23 –29, feb. 2012.

[Can10] Automated object persistence for JavaScript, ser. WWW ’10. New York,
NY, USA: ACM, 2010. [Online]. Available: http://doi.acm.org/10.1145/
1772690.1772711

[DYB+07] F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera, and R. Saint-Paul,
“Understanding ui integration: A survey of problems, technologies, and
opportunities,” IEEE Internet Computing, vol. 11, no. 3, pp. 59–66, May
2007. [Online]. Available: http://dx.doi.org/10.1109/MIC.2007.74

[GH96] J. Gray and P. Helland, “The dangers of replication and a solution,” in
In Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, 1996, pp. 173–182.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements
of reusable object-oriented software. Addison-Wesley Professional, 1995.

[Hic11] I. Hickson, “Web storage,” W3C, Candidate Recommendation, Dec. 2011,
http://www.w3.org/TR/2011/CR-webstorage-20111208/.

[KJL10] W. Kim, O.-R. Jeong, and S.-W. Lee, “On social web sites,” Inf.
Syst., vol. 35, no. 2, pp. 215–236, Apr. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2009.08.003

[KP88] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, pp. 26–49, Aug. 1988. [Online]. Available:
http://dl.acm.org/citation.cfm?id=50757.50759

[Nie93] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan

71

72 Bibliography

Kaufmann Publishers Inc., 1993. [Online]. Available: http://portal.acm.
org/citation.cfm?id=529793

[Pau05] L. Paulson, “Building rich web applications with ajax,” Computer, vol. 38,
no. 10, pp. 14 – 17, oct. 2005.

[RECC+12] R. Rodríguez-Echeverría, J. M. Conejero, P. J. Clemente, J. C. Preciado,
and F. Sanchez-Figueroa, “Modernization of legacy web applications
into rich internet applications,” in Proceedings of the 11th international
conference on Current Trends in Web Engineering, ser. ICWE’11. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 236–250. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-27997-3_24

[Rit07] P. Ritchie, “The security risks of ajax/web 2.0 applications,”
Network Security, vol. 2007, no. 3, pp. 4–8, Mar. 2007.
[Online]. Available: http://www.sciencedirect.com/science/article/
B6VJG-4NGKDY6-4/2/8945a7ec84b9063a377b3e0fc6168952

[SKK+90] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere,
“Coda: a highly available file system for a distributed workstation environ-
ment,” Computers, IEEE Transactions on, vol. 39, no. 4, pp. 447 –459,
apr 1990.

[Ter08] D. B. Terry, Replicated Data Management for Mobile Computing, ser. Synthe-
sis Lectures on Mobile and Pervasive Computing. Morgan & Claypool
Publishers, 2008.

[TTP+95] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser, “Managing update conflicts in bayou,
a weakly connected replicated storage system,” SIGOPS Oper. Syst.
Rev., vol. 29, no. 5, pp. 172–182, Dec. 1995. [Online]. Available:
http://doi.acm.org/10.1145/224057.224070

[VWV07] G. Vickery and S. Wunsch-Vincent, Participative Web and User-
Created Content: Web 2.0, Wikis and Social Networking, 1st ed.,
ser. OECD Publications. Paris: OECDpublishing, 10.
2007, http://www.oecd.org/document/40/0,3746,en_2649_34223_
39428648_1_1_1_1,00.html [Stand: 09. 03. 2011]. [Online]. Avail-
able: http://www.oecd.org/document/40/0,3746,en_2649_34223_
39428648_1_1_1_1,00.html

List of Figures

2.1 Xydra data model . 11

4.1 Traditional web application . 23
4.2 Layer interaction . 25

5.1 Collaborative to-do list application . 32
5.2 Xydra web application . 33
5.3 Example of a view . 38
5.4 Example of the use of widgets . 38
5.5 SWAX application interaction flow between client and server 42
5.6 SWAX application interaction control flow on the client 43
5.7 SWAX application interaction flow flow on the server 44

6.1 UML Class diagram . 46
6.2 Interaction flow of the one-way synchronization application 48

73

List of Tables

2.1 Xydra entities and corresponding entities in the domain of databases, object
oriented programming, and an example use case. 10

3.1 Estimated figures for a typical social web application 17
3.2 List of requirements for social web applications 21

4.1 Computing instance pricing comparison for Amazon Web Services, Google
App Engine and Microsoft Azure. 28

5.1 Overview of the layers and their entities, e.g. a ModelWidget has one to
many ObjectWidgets. A ModelWidget is the visual representation of an
AppModel. 33

5.2 AppEntities and the AppEvents they can sent out 36

7.1 Parameters of the to-do list application scenario 58
7.2 Data transfer sizes of each session for a traditional web application, the

one-way synchronization approach and Swaxodo. 58
7.3 Round-trips of each session for a traditional web application, the one-way

synchronization approach and Swaxodo. 59
7.4 Bandwidth costs for a traditional web application, the one-way synchro-

nization approach, and Swaxodo. 60
7.5 Computational costs for a traditional web application, the one-way synchro-

nization approach, and Swaxodo. 60
7.6 Overall costs including storage, computation, and bandwidth for a tradi-

tional web application, the one-way synchronization approach, and Swaxodo. 61
7.7 Feature comparison of Firebase, Meteor, Derby and SWAX 66

75

