
����

Diploma Thesis

Simplifying Semantic
Annotations in Text

cand. inform. Sebastian Gerke

submitted on June, 1st 2007

Supervisor:
Prof. Dr. Stefan Decker and Eyal Oren
Digital Enterprise Research Institute

National University of Ireland, Galway

2nd supervisor:
Prof. Dr. Rudi Studer

Institut für Angewandte Informatik und Formale Beschreibungsverfahren
Universität Karlsruhe

To my father.

Acknowledgements

I would like to thank Eyal Oren for his great support during the intern-
ship and the creation of this thesis. I also thank Prof. Dr. Stefan Decker
who gave me the opportunity to work in such a pleasant environment. Fur-
thermore I would like to thank Prof. Dr. Rudi Studer and Max Völkel
for arranging the internship and for co-supervising this thesis; all people in
DERI and my flat mates for making my stay in Galway an unforgettable
one.

I want to say thank you to my mother and my late father for making
my studies possible. They taught me things that really matter in life. And
last but not least, I would like to thank Judith for her love and support
throughout my studies.

2

Contents

1 Introduction 1

2 Background 3
2.1 Semantic Web and the role of RDF 3

2.1.1 URI . 5
2.1.2 RDF . 5
2.1.3 RDF Schema . 10

2.2 Semantic Wikis . 11
2.3 ActiveRDF . 11

2.3.1 Architecture . 12
2.3.2 Usage . 13

3 Personalised Wiki Syntax 16
3.1 Semantic Wiki Data Model 17
3.2 Wiki Engine Architecture . 20
3.3 Parsing Wiki syntax . 21

3.3.1 Wiki Syntax . 21
3.3.2 Parsing Process . 23
3.3.3 Lexical Analysis . 24
3.3.4 Parser . 28

4 Reusing Desktop Data 32
4.1 Overview . 32
4.2 Related Work . 33
4.3 Architecture . 33
4.4 Prototype Implementation . 34

5 Annotation Extraction 37
5.1 Related Work . 37
5.2 Implementation . 37
5.3 Outlook . 38

6 Collaborative Annotations 40
6.1 Classification-based algorithm 41

6.1.1 Preliminaries . 42
6.1.2 Classification step . 42
6.1.3 Ranking step . 43
6.1.4 Qualitative results . 44
6.1.5 Performance . 44

6.2 Co-occurrence-based algorithm 45
6.2.1 Precomputation step 45
6.2.2 Suggestion step . 46

6.3 Implementation . 48
6.3.1 Example suggestions 48

6.4 Evaluation . 48
6.4.1 Evaluation approach 49
6.4.2 Results . 51

6.5 Related Work . 55
6.6 Conclusion . 56

7 Conclusion 57

A Tables 58

B Figures 60

Zusammenfassung

Die Vorteile semantischer Annotationen sind vielschichtig: Sie erlauben de-
tailliertere Abfragen als konventionelle Suchmaschinen, durch sie können
Fragen präzise beantwortet werden (anstelle des Auffindens mehr oder we-
nig relevanter Dokumente) und sie ermöglichen regelbasierte Schlussfolge-
rungen. Kurz: Sie erleichtern die Arbeit. Allerdings erfordert die Erstellung
semantischer Metadaten zusätzlichen Aufwand, der den Gesamtvorteil se-
mantischer Technologien verringert. Die vorliegende Arbeit stellt verschie-
dene Ansätze vor, die die Erstellung semantischer Annotationen in Texten
vereinfachen. Der Fokus ist hierbei auf semantische Wikis als Autorenum-
gebung gelegt.

Folgende Probleme im Umfeld der Erstellung semantischer Annotationen
werden in dieser Arbeit behandelt: Zuerst wird ein Wiki-Parser vorgestellt,
der es erlaubt, die Inhalte eines Wikis syntax-unabhängig zu speichern. Da-
durch können die Benutzer eines Wikis ihre bevorzugte Wiki Syntax benut-
zen, sie müssen nicht eine festgelegte Syntax benutzen. Um die Inhalte eines
Wikis abzuspeichern, wird ein Wiki-Datenmodell eingeführt.

Existierende Daten auf dem Desktop eines Benutzers sind oft auf “Daten-
inseln” verteilt: Veschiedene Programme speichern ihre Daten zwar in ma-
schinenlesbarer Form ab, stellen sie jedoch nicht anderen Anwendungen zur
Verfügung. So ist es nur schwer möglich, Verknüpfungen zwischen Ressour-
cen aus verschiedenen Anwendungen zu erstellen. In dieser Arbeit wird eine
Architektur zur Integration existierender Daten in RDF-basierte Programme
vorgestellt. Dazu wird ActiveRDF, eine Datenspeicher-unabhängige Biblio-
thek zum objektorientierten Zugriff auf RDF-Daten, erweitert, um Daten
verschiedener Programme wie RDF-Daten zu behandeln. Das ermöglicht es
Programmierern, Daten aus beliebigen Anwendungen und RDF-Datenquellen
zu kombinieren.

Ein weiteres Problem ist die Verwendung eines gemeinsamen Vokabulars,
um Bedeutung aus den semantischen Annotationen zu generieren. Erst ein
gemeinsames Vokabular macht das Semantic Web semantisch. Im Gegen-
satz zum Tagging, wie in vielen sog. “Web 2.0” Anwendungen gebräuchlich,
ist die Verwendung festgelegter Annotationen notwendig. Diese Annotatio-
nen müssen zum Teil in Spezifikationen nachgeschlagen werden, da sie dem
Benutzer häufig nicht in vollem Umfang bekannt sind. Um das Nachschla-
gen zu vermeiden beziehungsweise zu vereinfachen, werden zwei Systeme
vorgestellt, die Annotationen für Ressourcen vorschlagen. Das erste System
extrahiert Informationen aus natürlichsprachlichem Text, um Vorschläge zu
generieren, während das zweite System bereits bestehende Annotationen als
Grundlage für weitere Annotationen verwendet.

Das natürlichsprachliche System basiert auf der Übereinstimmung von
Schlagworten zwischen dem Text und den lokalen Namen von URIs in RDF
Schemata. Dieser einfache Ansatz dient als Basis für komplexere Algorith-
men und verdeutlicht die Integration eines solchen Systems in den Autoren-
prozess.

Für den zweiten, auf existierenden Annotationen basierenden Ansatz
werden zwei Algorithmen vorgestellt. Der erste Algorithmus verwendet einen
Klassifikator, um ähnliche Ressourcen zu identifizieren und schlägt anschlie-
ßend Annotationen vor, die häufig von ähnlichen Ressourcen verwendet wer-
den. Verschiedene Variationen dieses Algorithmus’ wurden getestet, welche
sich unter anderem in der Definition eines Ähnlichkeitsmaßes unterscheiden.
Die qualitative Evaluation ergab vielversprechende Resultate (F1 ≥ 0, 85),
während die Laufzeit des Algorithmus’ nicht zufriedenstellend skalierte, da
sie linear abhängig von der Anzahl der Ressourcen in der Wissensbasis ist.
Die Verwendung von Untermengen der gesamten Wissensbasis ergab kei-
ne zufriedenstellende Verbesserung der Laufzeit (> 2s) ohne die Qualität
des Algorithmus entscheidend zu verschlechtern. Der zweite Algorithmus
verwendet gemeinsame Auftretenshäufigkeiten zwischen Annotationen. Da-
durch können einige Berechnungen im Voraus vorgenommen werden, was in
einer stark beschleunigten Erstellung von Vorschlägen resultiert. Darüber
hinaus ist die Laufzeit nicht mehr von der Anzahl der Ressourcen abhängig,
sondern nur noch von der Anzahl der verwendeten Prädikate in der Wissens-
basis. Das führt dazu, dass eine größere Wissensbasis nicht notwendigerweise
die Laufzeit verschlechtert. Evaluationen haben gezeigt, dass Vorschläge in
ca. 0,01 Sekunden generiert werden können und deren Qualität geringfügig
besser ist als die des Klassifikator-Ansatzes.

Abstract

The advantages of Semantic annotations are extensive: They allow more de-
tailed queries than conventional search engines, precise question-answering
instead of returning more or less relevant resources, and rule-based rea-
soning. Briefly: They can save work. But the creation of semantic meta-
data requires additional effort that decreases the overall benefit of semantic
technologies. The advantage of semantic metadata should outweigh its addi-
tional creation cost. This thesis proposes different techniques for simplifying
the creation of semantic annotations in text, with a focus on semantic wikis
as a semantic authoring environment.

Different problems of semantic authoring are tackled in this thesis: First,
a wiki parser which allows a syntax-independent storage of content is pre-
sented. It allows users to use their preferred wiki syntax, they don’t have to
adopt to a fixed syntax. A wiki data model is introduced to store the wiki
content.

Existing data on the desktop is often spread into “data islands”: different
applications already store their data machine-readable, but usually it is not
directly available to other applications. It is not possible to create links
between resources from different applications. In this thesis, an architecture
that facilitates integration of existing data into one semantic application is
presented. It extends ActiveRDF, a data store independent RDF library that
allows object-oriented access to RDF data, to provide access to this desktop
data as if it were RDF data. That lets programmers seamlessly combine
data from RDF data stores and desktop applications in their programs.

Another problem in semantic knowledge acquisition and authoring is
that users have to use a shared vocabulary to create meaning out of anno-
tations. This is a tedious task because finding the appropriate vocabulary
often implies looking up vocabulary specifications to ensure a correct usage
of vocabulary. To simplify vocabulary lookup, two systems for suggesting
annotations for a resource are presented in this thesis. The first suggestion
system is based on natural language text, whilst the second is based on
existing annotations.

The natural language based system applies keyword matching in the text
against keywords and local names of URIs in RDF schemas. Due to this
simple approach, the results of this system are not optimal. It can serve
as a foundation for more sophisticated algorithm for annotation suggestion
based on natural language text.

For the second approach, where the suggestions are based on existing
annotations, two different algorithms are proposed. One is using a classifier
approach to identify similar resources and then suggest annotations that are
often used among these similar resources. Similar resources are determined

by a similarity measure. Different variations of the algorithm were tested.
The qualitative results are quite good (F1 ≥ 0.85), but the runtime per-
formance does not scale well, it is linearly dependent from the number of
resources in the knowledge base. Using only a subset of all resources does not
yield satisfactory runtime performance (> 2s) without sacrificing too much
qualitative performance. The second algorithm for annotation suggestion
based on existing annotations uses co-occurrences of predicates. A lookup
table containing co-occurrences of all predicates can be computed before-
hand. At query time, only this table is used to generate suggestions. The
query runtime performance then only depends on the number of different
predicates used, not on the number of resources. That means that a bigger
knowledge base does not necessarily results in a worse runtime performance.
Evaluations of the algorithm show that suggestions are generated in about
0.01 seconds, yielding a F1 measure that is slightly better than those of the
similarity-based algorithm (F1 = 0.87).

1

Chapter 1

Introduction

The Semantic Web extends the current web with machine-readable meta-
data. The World Wide Web Consortium (W3C), the main standardisation
organisation for the World Wide Web, describes the Semantic Web as fol-
lows [17]:

“The Semantic Web is a web of data. There is lots of data we
all use every day, and its not part of the web. I can see my
bank statements on the web, and my photographs, and I can see
my appointments in a calendar. But can I see my photos in a
calendar to see what I was doing when I took them? Can I see
bank statement lines in a calendar?

Why not? Because we don’t have a web of data. Because data is
controlled by applications, and each application keeps it to itself.

The Semantic Web is about two things. It is about common
formats for integration and combination of data drawn from di-
verse sources, where on the original Web mainly concentrated
on the interchange of documents. It is also about language for
recording how the data relates to real world objects. That allows
a person, or a machine, to start off in one database, and then
move through an unending set of databases which are connected
not by wires but by being about the same thing.”

But making the World Wide Web a web of data is expensive, espe-
cially when it is not created automatically. Human-generated content gains
more and more popularity in the so-called Web 2.0. Blogs, wikis and other
community-centric web sites are emerging rapidly during the last few years.
Making the content on these web sites machine-processable is laborious, ad-
ditional effort is required to enrich the data semantically. A user creating
content on a wiki e.g. also has to enter additional semantic annotations
about the things he describes on a wiki page. To increase the overall benefit
from semantically annotated web content, one can either improve the usage

1. Introduction
2

of semantically annotated content, or one can facilitate creation of semantic
metadata. In this thesis, we focus on the latter, i.e. we introduce methods
for simplifying the creation of semantic annotations in text, especially in
wiki text.

The thesis is organised as follows: First, we explain the background
technologies of this work in chapter 2. That includes an introduction to Se-
mantic Web and its technologies, a short overview over semantic wikis and a
brief summary of ActiveRDF, a library for the Ruby programming language
that provides an object-oriented access to Semantic Web data. Afterwards,
the developed methods are described in detail. In chapter 3, we present a
method for a personalisable wiki syntax. In chapter 4, we present an archi-
tecture and a prototype implementation of a desktop integration component
which allows for reuse of existing data and metadata on the user’s desktop.
In chapter 5, we show a prototype of a annotation suggestion system that
uses natural language from text to generate suggestions. In chapter 6, we
introduce a annotation suggestion system that gives suggestions for further
annotations based on existing ones. Finally, we conclude the presented work
in chapter 7. Additional tables and plots that show additional results from
chapter 6 can be found in the appendix. They were moved to the appendix
due to readability reasons.

3

Chapter 2

Background

2.1 Semantic Web and the role of RDF

The Semantic Web is a machine-readable extension of the current World
Wide Web. In its current form, data on the Web is mainly supposed to be
consumed by humans. Machines can not understand the meaning of the
majority of content on the Web and thus can not use this information. So
if a user wants to aggregate or combine data from different sources, he has
to do it manually.

Imagine the scenario of preparing a trip to a conference. The user first
has to search for a flight to the conference venue, then book this flight. After
that, he has to check the timetable of the local train company to get a train
to the airport. He reserves a seat over the online reservation system of the
train company. Finally he searches for a bus service that operates from the
airport to the city center and checks the timetable for a bus connection.

In an ideal Semantic Web, all pages on the Web are semantically anno-
tated, i.e. each page provides machine-readable metadata that describes its
content. The current content is not replaced by machine-readable data, it is
enriched by it. Originally, Tim Berners Lee expressed this vision as follows
[6]:

“I have a dream for the Web [in which computers] become ca-
pable of analyzing all the data on the Web – the content, links,
and transactions between people and computers.[...] the day-to-
day mechanisms of trade, bureaucracy and our daily lives will
be handled by machines talking to machines. The ’intelligent
agents’ people have touted for ages will finally materialize.”

In a Semantic Web setting, the whole trip planning process would be
like this: The users tells a software agent that he wants to be at a specified
hotel at a specified time. The agent then automatically checks all necessary
timetables (train, flight and bus) and presents a list of possible trips along

2. Background
2.1. Semantic Web and the role of RDF 4

Figure 2.1: Semantic Web Stack

with their prices and itineraries. The user then has to select one trip and
the agent immediately books all tickets and prints them.

The Semantic Web uses ontologies as a formal representation of data.
An ontology is a shared data model that represents a domain and is used
to reason about the objects in that domain and their relations. An ontol-
ogy defines classes, instances of classes, attributes and relations between
instances (like a taxonomy). Furthermore, it provides rules for reasoning
over the knowledge encoded in this ontology. Popular ontologies are the
Friend Of a Friend (FOAF), Dublin Core (DC) and Socially Interlinked
Online Communities (SIOC) ontologies.

Figure 2.1 shows the so-called Semantic Web layer cake that depicts the
standard technologies that are used in Semantic Web applications. The bot-
tom layers consist of existing web standards for identifying resources (uni-
form resource identifier (URI)) and character encoding (Unicode)1. URIs
will be explained more detailed in section 2.1.1. XML, a standard syntax
for data, uses these two technologies to build a foundation for the Semantic
Web specific technologies.

The first Semantic Web specific layer is the Resource Description Frame-
work (RDF). RDF is a “data model for referring to resources and how they
are related”[39]. It provides a standard data model for encoding knowl-
edge in triples of elementary sentences containing a subject, a predicate
and an object. A more detailed explanation of RDF can be found in sec-
tion 2.1.2. On top of RDF is RDF Schema (RDFS). It is a lightweight
ontology language for specifying vocabularies for RDF [12]. RDFS is an
extension of RDF which provides a vocabulary for defining classes, class
hierarchies, properties, property hierarchies and property restrictions [23].
This vocabulary allows basic reasoning over subclass and subproperty hier-
archies. RDFS is presented more detailed in section 2.1.3. The OWL (Web
Ontology Language) / Rules layer contains a vocabulary that allows more
advanced resource descriptions and restrictions. OWL consists of three sub-

1http://www.unicode.org

http://www.unicode.org

2. Background
2.1. Semantic Web and the role of RDF 5

languages: OWL Lite, OWL DL 2 and OWL Full. These three sublanguages
differ in expressiveness and computational complexity. Each of the sublan-
guages extends its simpler predecessor, i.e. a valid OWL Lite conclusion is
also a valid OWL DL and OWL Full conclusion [25].

SPARQL (SPARQL Protocol and RDF Query Language) is a protocol
and a query language similar to SQL that allows to query RDF stores. Logic
is provided by reasoners that allow inferencing of new knowledge based on
rules, whereas on the proof layer the consistency of existing data based on
the same rules is guaranteed. Finally, the trustfulness of the data can be
assured by using signatures and encryption.

2.1.1 URI

An URI (Uniform Resource Identifier) is defined as an extensible, compact
string of characters that is used for the identification of resources. A URI can
either identify a physical or an abstract resource, like web sites, documents,
email addresses, web service endpoints etc. An example for an URI is http:
//www.deri.ie/about. Generally, an URI consists of two parts: the first
part (before the colon) defines the URI scheme, the second part is type-
specific. Its interpretation depends on the URI scheme.

2.1.2 RDF

The metadata has to be put in a standardized format to ensure exchange-
ability. The standard format (as specified by the World Wide Web Consor-
tium (W3C)) to express the meaning is the Resource Description Framework
(RDF). RDF encodes knowledge in sets of triples (also called statements),
each triple representing the subject, predicate and object of an elementary
sentence [37]. For example to express the sentence “Eric knows Steve” in
RDF, a triple with a subject denoting “Eric”, a predicate denoting “knows”
and an object denoting “Steve” can be formed.

The subject of a triple is a resource, possibly identified by an URI. Some
resources do not have an URI, they are anonymous and called blank nodes
[23]. As they are anonymous, they cannot be directly referenced. The
predicate is also a resource representing a relationship, but it must not be
anonymous. The object is either a (possibly anonymous) resource or a string
literal.

Definition 1 (RDF Triple) Let T be a finite set of triples. T contains
the finite sets of URIs U , of local blank node identifiers B and of literals L.

An RDF triple t ∈ T is defined as a 3-tuple (s, p, o) with s ∈ U∪B, p ∈ U
and o ∈ U ∪B ∪ L. The projections subj : t → s ∈ U ∪B, pred : t → p ∈ U

2DL stands for Description Logic

http://www.deri.ie/about
http://www.deri.ie/about

2. Background
2.1. Semantic Web and the role of RDF 6

and obj : t → o ∈ U ∪ B ∪ L return the subject, predicate and object of a
triple respectively.

In the example, Eric is identified by the URI http://eric.com/foaf.
rdf and Steve by the URI http://steve.com/foaf.rdf. Now everyone
can make statements about Eric and Steve by referring to their URI. The
relation “knows” has the URI http://xmlns.com/foaf/1.0/knows. Now
the example statement can be expressed in RDF by a triple containing http:
//eric.com/foaf.rdf as subject, http://xmlns.com/foaf/1.0/knows as
predicate and http://steve.com/foaf.rdf as object.

A set of triples is called a RDF graph [20]. A RDF graph can also be
graphically represented as a graph with subject and objects of an statement
represented by nodes and predicates represented by labelled directed arcs.
Formally, a RDF graph is not a graph in a classical mathematical sense
because a predicate (arc) in one statement can appear as a subject or an
object (node) in another statement. In most graphical representations of
RDF graphs, the resources that appear as subject or objects and predicates
are duplicated and appear twice in the figure [15]. Another possibility is to
allow edges that connect to other edges instead of nodes. Both options have
their advantages, see [15] for further details. A more formally correct way
to represent a RDF graph is a hypergraph that treats subject, predicate and
objects of a statement as nodes and connects them with one directed “arc”.
The first approach for RDF graph visualisation is used in this thesis. It is
more readable and a formally correct graph representation is not needed for
our purposes. The formal definition of a RDF graph is as follows:

Definition 2 (RDF graph) An RDF graph G is a set of triples T and
is defined as G = (V,E, lV , lE) where V := {vx|x ∈ subj(T) ∪ obj(T)}
is a finite set of vertices (subjects and objects) with the labelling function
lV : vx → x and E := {ex|x ∈ pred(T)} is a finite set of edges (predicates)
with the labelling function lE : ex → x. The projections source : E → V and
target : E → V return the source and target nodes of edges respectively.

In a graphical representation of an RDF graph, URIs and blank nodes
are drawn with ellipses while literals are drawn with rectangles. The shapes
representing URIs and literals contain a label with their URI or string literal
respectively. Blank nodes are usually drawn without any label. Sometimes
their local blank node identifier is used as a label. A directed arc from the
subject to the object of a triple connects these two resources. The arc is
labelled with the URI of the statements’ URI. Figure 2.2 shows two example
visualisation of a RDF graph, one as it is used in this thesis (left side) and
one hypergraph visualisation.

http://eric.com/foaf.rdf
http://eric.com/foaf.rdf
http://steve.com/foaf.rdf
http://xmlns.com/foaf/1.0/knows
http://eric.com/foaf.rdf
http://eric.com/foaf.rdf
http://xmlns.com/foaf/1.0/knows
http://steve.com/foaf.rdf

2. Background
2.1. Semantic Web and the role of RDF 7

http://eric.com/
foaf.rdf

"Eric"

foaf:name

http://steve.com/
foaf.rdf

foaf:knows

http://eric.com/
foaf.rdf

"Eric"

http://steve.com/
foaf.rdf

foaf:knows

foaf:name

Figure 2.2: Usual graphical representation of a RDF graph (left) and hy-
pergraph representation (right) of the same RDF graph.

Vocabulary

RDF defines a minimal vocabulary to express properties, class memberships,
different containers and reification of statements. RDF classes (classes are
defined in the RDF Schema vocabulary which is presented in section 2.1.3)
and properties are preceded by the prefix rdf. rdf:Property is the class
of RDF properties. Predicates of RDF triples can be inferred as instances
of rdf:Property. Instances of classes are defined by the rdf:type prop-
erty. A resource can have multiple types, unlike in many object-oriented
programming languages.

Reification allows statements about statements by making them adress-
able. Therefore, the rdf:statement class is introduced. For a reified
statement, an instance of rdf:Statement is created. The properties rdf:
subject, rdf:predicate and rdf:object define the subject, predicate or
object of the statement respectively.

RDF provides different containers and collections. A container defines
an infinite group of things whilst a collection defines a finite group of things.
That means that collections are closed [23]. The members of a collection are
complete, no other members exist. A collection in RDF is represented by the
rdf:List class. A rdf:List is constructed using the properties rdf:first
and rdf:rest, and the resource rdf:nil. rdf:first points to the first
element in the list, rdf:rest to another list containing the rest of the list.
Figure 2.3 shows an example graph that represents the sentence “Sebastian
has written the papers A, B and C.” Each blank node forming this list is
implicitly of type rdf:List [23], so it is not necessary to state that explicitly
in a statement. The last list item’s rdf:rest property points to rdf:nil,
a predefined resource representing an empty rdf:List.

In addition to the rdf:List class, RDF defines the following three types
of containers:

rdf:Statement
rdf:subject
rdf:subject
rdf:predicate
rdf:object
rdf:List
rdf:List
rdf:first
rdf:rest
rdf:nil
rdf:first
rdf:rest
rdf:List
rdf:rest
rdf:nil
rdf:List
rdf:List

2. Background
2.1. Semantic Web and the role of RDF 8

rdf:nil

example:sebastian

example:authorOf

rdf:rest

rdf:rest

rdf:rest

example:C

example:A

example:B

rdf:first

rdf:first

rdf:first

Figure 2.3: Example RDF graph representing a list collection.

example:sebastian

example:authorOf

example:Cexample:A

example:B

rdf:Bag

rdf:_1 rdf:_3

rdf:_2

rdf:type

Figure 2.4: Example RDF graph representing a bag container.

2. Background
2.1. Semantic Web and the role of RDF 9

• rdf:Bag

• rdf:Seq

• rdf:Alt

A bag is an unordered group of resources or literals with potentially dupli-
cate members. A sequence is a group of resources or literals where the order
is significant, possibly containing duplicate members. An alternative repre-
sents a group of resources / literals that are alternatives, i.e. an application
can use an arbitrary member of this group. For example, it can describe a
list of alternative internet sites where a file can be downloaded. All these
containers are described by one resource (or blank node) representing this
list. This resource has one of the three types. The items of the list are linked
with container membership properties. They are named rdf:_n, where n
is an integer greater than zero without leading zeros, e.g. rdf: 1, rdf: 2,
etc. A collection representation of the list shown in figure 2.3 is depicted in
figure 2.4.

RDF also defines a class of special literals, rdf:XMLLiteral, which is a
literal that contains XML markup.

Please refer to the W3C RDF primer [23] for more details about the
RDF vocabulary.

Serialisation

To make a RDF model machine-readable, a standard syntax for RDF models
is needed. In fact, there are many different ways for the serialisation of
RDF models like RDF/XML, which serialises RDF in XML. Other syntaxes
like N-Triples or Notation 3 (N3) have been developed for either better
readability for humans (N3) or for effective parsing (N-Triples). A sample
RDF/XML serialisation looks like this:� �
<?xml v e r s i o n =”1.0”?>
<r d f :RDF xmlns : f o a f=”ht tp : // xmlns . com/ f o a f /1.0/”>

<r d f : D e s c r i p t i o n r d f : about=”ht tp : // e r i c . com/ f o a f . r d f ”>
< f o a f : knows>

<r d f : D e s c r i p t i o n
r d f : about=”ht tp : // s t e v e . com/ f o a f . r d f ”/>

</ f o a f : knows>
</ r d f : D e s c r i p t i o n >

</ r d f :RDF>� �
An N3 serialisation of the same triple looks as follows:� �
@p r e f i x f o a f : <ht tp : // xmlns . com/ f o a f /1.0/> .

<ht tp : // e r i c . com/ f o a f . rd f > f o a f : knows
<ht tp : // s t e v e . comfoaf . r d f /> .� �

N-Triples is very similar to N3, they both serialise one triple per line. N3
additionally allows the abbreviation of namespace prefixes and the omission

rdf:Bag
rdf:Seq
rdf:Alt
rdf:_n

2. Background
2.1. Semantic Web and the role of RDF 10

of the subject if some triples have the same subject and are serialised in
neighboured rows in the file. See [5] for more details about N3. Turtle [4] is
another RDF syntax, it is a subset of N3.

2.1.3 RDF Schema

RDF schema (RDFS) is RDF’s vocabulary description language. It provides
a type system for RDF, similar to type systems in object-oriented program-
ming languages. Resources can grouped together using classes. Members of
a class are called instances. The rdf:type property assigns a class to a re-
source. The group of RDF schema classes is itself a class called rdfs:Class
[7]. The class extension of a class is the set of instances of this class. The
rdfs:subClassOf property defines a subclass relation. RDF schema defines
the following classes:

rdfs:Resource is the class of all things described by RDF.

rdfs:Class is the class of resources that are RDF classes.

rdfs:Literal is the class of literal values. Literals may be plain or typed.
A typed literal is an instance of a datatype class. rdfs:Literal is an
instance and a subclass of rdfs:Class.

rdfs:Datatype is the class of datatypes. rdfs:Datatype is an instance
and subclass of rdfs:Class. Each instance of rdfs:Datatype is a
subclass of rdfs:Literal.

rdf:Property is the class of RDF properties.

RDF schema provides different properties to define hierarchies of classes
and properties, to define domain and range of properties and to add labels
and descriptions to resources. The following properties are defined by RDF
schema:

rdf:type is used to state that a resource is an instance of a class.

rdfs:subClassOf is a transitive property that defines subclass relations. If
class A′ is a subclass of class A, instances of A′ are also instances of
A.

rdfs:subPropertyOf is a transitive property that defines subproperty re-
lations. If P ′ is a subproperty of P , all resources related by P are also
related by P ′.

rdfs:domain is used to state that a resource that has a given property is
an instance of one or more classes.

rdfs:range is used to state that the values of a property are instances of
one or more classes.

2. Background
2.2. Semantic Wikis 11

rdfs:label is used to provide a human-readable representation of a resource.

rdfs:comment is used to provide a human-readable description of a re-
source.

In contrast to type systems in object-oriented programming languages,
RDF schema does not define valid attributes for instances of classes but it
defines class instances for attributes. A complete specification of the RDF
schema vocabulary can found in [7].

2.2 Semantic Wikis

Semantic wikis combine the easiness and versatility of wikis with the idea of
an Semantic Web. They allow collaborative creation of semantically anno-
tated content without any restrictions on the domain. In most implementa-
tions, wiki text and semantic annotations can be mixed arbitrarily. There
are many different implementations which vary in their use case and their
maturity. Well-known semantic wiki implementations are Semantic Me-
diawiki3 [38], a semantic extension of Wikipedia’s wiki engine Mediawiki,
SemperWiki4 [27, 30], a semantic personal wiki and IkeWiki5 [34]. The ad-
vantage of total freedom on the described domain makes it harder to support
the user creating annotations. All mentioned implementations either do not
provide annotation support or they only list all known predicates.

2.3 ActiveRDF

Due to the decentralised infrastructure of the Semantic Web, the knowledge
is distributed over multiple data sources. Most current RDF application
programming interfaces (API) provide a triple-centric access to different
data sources. Data sources in the Semantic Web can be heterogeneous: they
can be relational databases, HTML pages with embedded RDF, SPARQL
endpoints or plain RDF files. Most APIs interact with these data sources
using RDF-specific classes, like e.g. Triple and Graph. This triple-centric
access might confuse users that are not familiar with RDF and prevents
them from using RDF for storing and exposing data.

ActiveRDF6 [29] is a RDF library for the Ruby programming language.
It provides a more intuitive, object-oriented access to RDF data which hides
the complexity of RDF. The programmer using ActiveRDF does not have
to handle different RDF serialisations, graphs and triples. Instead, he can
use a domain specific language (DSL) to programmatically access RDF data.

3http://ontoworld.org/wiki/Semantic_MediaWiki
4http://www.semperwiki.org
5http://ikewiki.salzburgresearch.at/
6http://www.activerdf.org/

http://ontoworld.org/wiki/Semantic_MediaWiki
http://www.semperwiki.org
http://ikewiki.salzburgresearch.at/
http://www.activerdf.org/

2. Background
2.3. ActiveRDF 12

Application

Object Manager

Query Engine

Federation

Adapter 1

Data store 1

Adapter 2

Data store 2 ...

Ac
tiv
eR
D
F

...

Figure 2.5: Architecture of ActiveRDF

ActiveRDF can compared to object-relational mappers: they provide object-
oriented access to a relational database. Unlike relational databases, Seman-
tic Web data has no fixed structure, it is dynamic. Thus, a static mapping
as used in object-relational mappers is not completely sufficient. A dynam-
ically typed programming language like Ruby or Python is more suited to
this dynamic structure than statically typed programming languages like
Java, C or C#. In this section, we first present the architecture of Ac-
tiveRDF. Then we explain its different components. Finally, examples for
different use cases of ActiveRDF are given.

2.3.1 Architecture

The general principle of ActiveRDF is the representation of a RDF resource
through transparent proxy object. Read and write methods on the proxy
object are directly forwarded to the RDF model. The proxy object does
not store any state. Figure 2.5 shows an overview of the architecture of
ActiveRDF. ActiveRDF consists of four components which abstract from
RDF to objects gradually.

Object manager

The object manager provides a virtual API for the programmer. It is called
virtual because the classes and methods are not generated. Unhandled
method calls are caught by using meta-programming and then translated
into RDF queries. The object manager maps objects to RDF resources,
classes to RDFS classes (if a RDF schema exists) and methods to data ma-
nipulation queries. For example, when the application calls a find method,
the object manager translates this operation into a query on the data source.
When a resource belongs to multiple classes and two or more classes define
the same method, a resolution strategy must be used to choose a method.
Various possibilities exist to handle this multiple inheritence: The first

2. Background
2.3. ActiveRDF 13

method found can be used, an error can be raised or the user can indicate
a preference for certain methods.

Query engine

The object manager uses to the query engine to construct queries from
method calls. The query engine provides an query API that is independent
of a specific data source and query language. The query engine returns an
object representing a query which is translated to a data source specific
query by the appropriate adapter.

Federation Manager

The federation manager handles the integration of multiple data sources.
It distributes queries to some or all these sources and collects the query
results. In the current implementation, queries are distributed to all sources
subsequently.

Adapters

Adapters are the data source specific component of ActiveRDF. They trans-
late the query objects to database compliant queries and execute them. Each
adapter must implement only a few methods which simplifies writing an
adapter.

2.3.2 Usage

We now show a few examples to demonstrate ActiveRDF’s features. Please
refer to the wiki7 of the ActiveRDF project for a detailed documentation of
its usage.

Connecting to a data source

To support multiple data sources, ActiveRDF maintains a connection pool to
these sources. The developer can add and remove data sources to and from
the pool. In the following example, a connection to a SPARQL endpoint is
established.� �
Connect ionPoo l . add (: t ype => : s p a r q l ,

: r e s u l t s=> : s p a r q l xm l ,
: u r l => ’ h t tp : // b rowse rd f . o rg : 81 ’)� �

In addition to the type of the connection, the URL to the data source must be
given. Optionally, we can specify the desired result format. Most parameters
are adapter dependent, e.g. an URL parameter for an in-memory triple
store does not make sense. In the next example, we connect to a RDFlite

7http://wiki.activerdf.org

http://wiki.activerdf.org

2. Background
2.3. ActiveRDF 14

data store. RDFlite is an embedded triple store based on SQLite8. It
provides both read and write operations, and, with an additional Ruby
library, fulltext search. Now we connect to a RDFlite data store which is
stored in a file.� �
Connect ionPoo l . add (: t ype => : r d f l i t e ,

: l o c a t i o n=> ’ f o a f . dat ’)� �
For a full reference over the existing adapters and their parameters,

please refer to the ActiveRDF wiki.

Data manipulation

Now that the connection to one or more data sources has been established,
we can access and manipulate the data. Assume that the RDFlite data store
we are connected to contains FOAF data, including the FOAF schema. Now
we want to add a person to this store. First, we advise ActiveRDF to register
the FOAF Namespace and to generate the classes for the FOAF schema.� �
Namespace . r e g i s t e r (: f o a f , ’ h t tp : // xmlns . com/ f o a f /0 . 1/ ’)
ObjectManager . c o n s t r u c t c l a s s e s� �
Now we can create a new Person, add some properties to it and save the
changes.� �
s e b a s t i a n = FOAF : : Person . new (’ h t tp : //www. d e r i . o rg / gerke ’)
s e b a s t i a n . f i r s tName = ’ Sebas t i an ’
s e b a s t i a n . surname = ’ Gerke ’
s e b a s t i a n . mbox = ’ s e b a s t i a n . g e r k e@de r i . org ’
s e b a s t i a n . save� �
Dynamic Finders

When we want to lookup a person’s mail address, we use ActiveRDF’s find
methods. We can either find all resources of a certain type or we can find
resources that match an attribute that we are looking for. The following
listing shows how to find all persons in the data store.� �
a l l = FOAF : : Person . f i n d a l l
a l l . each do | pe r son |

p r i n t pe r son . surname
end� �
If we are only looking for persons with e.g. e certain surname, we use the
find by methods that ActiveRDF’s virtual API provides.� �
s e b a s t i a n = FOAF : : Person . f i n d by su r name (’ Gerke ’)
p r i n t s e b a s t i a n . mbox� �
Now we retrieved the mail address of Sebastian.

8http://www.sqlite.org

http://www.sqlite.org

2. Background
2.3. ActiveRDF 15

Query engine

For some purposes, using the virtual API may not be sufficient or ineffi-
cient. For advanced queries, ActiveRDF exposes its internal query engine.
A simple query for all subjects in the triple store looks as follows.� �
query = Query . new
r e s o u r c e s = query . s e l e c t (: s) . where (: s , : p , : o) . e x e cu t e� �
This query finds all subjects, ignoring dupllicates. A distinct list of all
subjects is obtained by using the distinct method instead of the select
method.� �
query = Query . new
r e s o u r c e s = query . d i s t i n c t (: s) . where (: s , : p , : o) . e x e cu t e� �
To obtain the number of resources that match a certain criteria, the count
method is used. The following query finds the number of persons whose
surname is “Gerke”. Multiple criteria can be used in a query by using the
where method repeatedly.� �
query = Query . new
query . count . d i s t i n c t (: s)

. where (: s ,
Namespace . l ookup (: rd f , : t ype) ,
Namespace . l ookup (: f o a f , : pe r son)

. where (: s ,
Namespace . l ookup (: f o a f , : surname) ,
’ Gerke ’)� �

16

Chapter 3

Personalised Wiki Syntax

Currently, many different wiki systems exist with often many different wiki
syntaxes, making it difficult for users of different wikis to use the right
wiki markup elements. An experienced user of one wiki would often make
mistakes when editing a different wiki system. These mistakes are time-
consuming: users need to manually replace wrong syntax elements (since
browsers do not support search and replace in text fields) or copy the text
into a text editor, edit it, and copy it back into the wiki.

For users of different wikis, it would be comfortable if each user can
choose his own favourite wiki syntax. If every wiki would support such a
personalisation of wiki syntax, a user can create a his own preferred syntax
description and use this syntax for all wikis he uses. Such a personalisable
wiki syntax is described in this chapter.

Several challenges need to be overcome to enable a personalisable wiki
syntax. First, we need to store the wiki content in a syntax independent
manner. Simply storing the markup of the wiki content, like *, ==, as
used in most current wikis, is not feasible since the markup would have
different meaning for different users. A wiki data model as an intermediate
representation of content is needed. Therefore the wiki markup has to be
parsed into this wiki data model. This reveals the second challenge: An
fault-tolerant parser that parses all recognised wiki syntax elements and
treating everything that is not recognised as plain text. This challenge
occurs only if a “real” parser is used. The search-and-replace parsing used
in most wiki engines does not have this problem because it only replaces
recognised elements and leaves the rest unchanged. Thirdly, the parser must
be able to change the tokens at runtime. This implies that the parser either
must not be generated by grammar. It must be completely dynamically
configurable.

The structure of the chapter is as follows: First, a syntax independent
data model for wiki content is presented in this chapter. Then the archi-
tecture of the wiki syntax engine (for rendering and parsing) is described.

3. Personalised Wiki Syntax
3.1. Semantic Wiki Data Model 17

Finally, a description and discussion of the wiki syntax parser follows.

3.1 Semantic Wiki Data Model

To allow a syntax-independent storage of the wiki content, we need a data
model for this content. Most current wikis store the markup directly and ren-
der the content to HTML at access time by replacing the wiki markup with
HTML tags by means of regular expressions. This approach is not feasible
for a wiki that allows a customisable syntax. To allow such a customisable
syntax, an intermediate data model is necessary. There are several existing
approaches for a wiki data model, namely flexbisonparser1, an extension to
the Mediawiki engine, wiki interchange format (WIF)2, WikiWyg3, Wiki-
Model4, InterWikiMarkupLanguage (IWML)5 and IkeWiki6. Since none of
these models have yet emerged as an accepted standard and since for our
prototype a minimalistic model would be sufficient, we designed a minimal
Semantic Wiki model, shown in Figure 3.1.

The wiki data model is a page centric data model, additional data and
features such as user and rights management has not been included in the
data model. The content of the wiki is represented by the Element class.
This class is the superclass of all elements that appear in a wiki page. Some
of these elements can be containers for other elements, they are described
by the Container class. Concrete subclasses of this class are classes that
represent a certain text style, namely italic, bold, teletype, underline and
strikethrough. These containers also store their content in an ordered list.
Elements that are not containers cannot embed arbitrary syntax elements.
These elements are links, images, headers, text, end of line, begin of line
and semantic annotations. A list is a more complex syntax element, it
consists of an ordered list of list items which can contain arbitrary elements.
There are two types of lists: ordered lists and unordered lists. Here is a
detailed description of all container syntax elements, which are used for text
formatting:

Italic Prints the content in italic type.

Bold Prints the content in bold type.

Underline Prints the content underlined.

Teletype Prints the content in a typewriter font.
1http://svn.wikimedia.org/svnroot/mediawiki/trunk/flexbisonparse/
2http://ontoware.org/projects/wif/
3http://www.wikiwyg.net/
4http://wikimodel.sourceforge.net/
5http://www.altheim.com/specs/iwml/
6http://ikewiki.salzburgresearch.at/

http://svn.wikimedia.org/svnroot/mediawiki/trunk/flexbisonparse/
http://ontoware.org/projects/wif/
http://www.wikiwyg.net/
http://wikimodel.sourceforge.net/
http://www.altheim.com/specs/iwml/
http://ikewiki.salzburgresearch.at/

3. Personalised Wiki Syntax
3.1. Semantic Wiki Data Model 18

+c
hi
ld
re
n

C
on
ce
pt

-
tit
le
 :
st
rin

g
-
U
R
I :
 s
tr
in
g

C
on

ta
in

er

+
ad
d(
) :
 v
oi
d

+
re
m
ov
e(
) :
 v
oi
d

«i
nt
er
fa
ce
»

E
le

m
en

t
+
re
nd
er
()
 :
st
rin
g

S
tr
ik
et
hr
ou
gh

U
nd
er
lin
e

A
nn
ot
at
io
n

- p
re
di
ca
te
 :

-
ob

je
ct
 :

H
ea
de
r

-
ne
st
in
g_
le
ve
l :
 in
t

Li
nk

-
ta
rg
et
 :

C
am

el
C
as
eL
in
k

E
xt
er
na
lL
in
k

In
te
rn
al
Li
nk

- l
ab
el
 :
st
rin
g

La
be
lle
dL
in
k

- l
ab
el
 :
st
rin
g

Im
ag
e

- l
ab
el
 :
st
rin
g

-
lo
ca
tio
n
: s
tr
in
g

Li
st

-
de
pt
h
: i
nt

Li
st
Ite
m

+
re
nd
er
()
 :
st
rin
g

O
rd
er
ed
Li
st

U
no
rd
er
ed
Li
st

Te
xt

-
te
xt
 :
st
rin

g

B
eg
in
O
fL
in
e

E
nd
O
fL
in
e

W
ik
iP
ag
e

-
U
R
I :
 s
tr
in
g

- c
re
at
or
 :
st
rin
g

- c
re
at
io
n_
tim

e
: d
ou
bl
e

- m
od
ifi
ca
tio
n_
tim

e
: d
ou
bl
e

+
re
nd
er
()
 :
st
rin
g

B
ol
d

Ita
lic

Te
le
ty
pe

+c
on
te
nt
 (o

rd
er
ed
)

1

+c
on
te
nt
 (o

rd
er
ed
)

1

D
ia
gr
am

: c
la
ss
 d
ia
gr
am

 P
ag
e
1

F
ig

ur
e

3.
1:

W
ik

i
M

od
el

3. Personalised Wiki Syntax
3.1. Semantic Wiki Data Model 19

Strikethrough Strikes through the content.

And here a description of basic elements that are not containers:

Link A hyperlink to another page. Targets can be external or internal, and
they have an optional label.

Header A header of a section. A nesting level is stored with the header to
assign a correct formatting to the header.

Image An image in a wiki page. It contains the URL where the image
can be found. For simplicity we do not specify more advanced image
properties like size, alternative text.

Annotations Allows to semantically annotate the concept of the current
wiki page. The predicate and object can be assigned by the user, the
subject is automatically assigned by the system to the concept of the
current page.

Text Plain text.

End Of line Special element for the end of a line.

Begin of line Special element for the begin of a line.

List A special case is a list, it contains list items, which are containers for
arbitrary content. A list can either be ordered:

1. Red
2. Green
3. Blue

or unordered:

• Red
• Green
• Blue

One major design decision is the separation of a wiki page from the con-
cept that is described by this wiki page. This allows statements about both
a wiki page and the concept described by the wiki page without confusing
these two. Imagine a Wikipedia page about the book “Das Parfüm”. In a
wiki that does not differ between the wiki page and the concept it describes,
a statement like dc:creator ’Patrick Süsskind’ can be interpreted in
two ways: Either Patrick Suesskind is the author of the book, or he is the
author of the Wikipedia article about that book. A separation between the
wiki page and the concept described by a wiki page avoids this ambiguity.
So each WikiPage has one Concept that it describes. Additionally, some in-
trinsic metadata like creation time, author, modification time is maintained
for a wiki page.

3. Personalised Wiki Syntax
3.2. Wiki Engine Architecture 20

edit
+ red
+ green

Wiki Page
John

DB
store

Rendering
engine

load

Jack

render
● red

● green

HTML

view

Figure 3.2: Edit / View process of a standard wiki engine (without syntax
customisation)

edit
- red
- green

Wiki Page
John

DB
serialise

Rendering
engine

load

Jack

 render
● red

● green

HTML

view

parse

Wiki model

Wiki model

Wiki Parser
engine

+ red
+ green

Wiki Page

ren

de
redit

 ...

Figure 3.3: Edit / View process of a wiki engine with syntax customisation

3.2 Wiki Engine Architecture

The architecture of the wiki rendering and parsing engine differs from those
from traditional wikis as it uses an intermediate data model for the page
content instead of storing the wiki markup directly. This data model can
be either serialised into XML or JSON or in any other serialisation format.
Figure 3.2 illustrates the edit and view process of a conventional wiki. It
shows a typical wiki with one user editing a wiki page and another user
viewing this wiki page. John creates a wiki page by adding a list with two
elements. This page is directly (without any processing step) stored into
the database when John submits the edited page. When Jack wants to see
that page, it is loaded from the database and then rendered into HTML by
regular expressions search and replace.

Figure 3.3 shows an overview of a similar process for our wiki with cus-
tomisable syntax. Again, John creates a wiki page containing a list with two
items. Then the wiki markup text is parsed into the wiki data model by the

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 21

wiki parsing engine. Subsequently, this intermediate model is serialised into
XML or any other serialisation (e.g. any RDF serialisation format, JSON).
Of course, for a Semantic Web application, a RDF serialisation seems to be
the best option. The problem is that RDF is not efficient for storing long or-
dered lists which can make such an implementation not very well-performing
for a highly used wiki. Now that the content of the recently added page is
stored, it is available for viewing and editing for other users. If Jack wants
to view and edit this page, the data model for that page is loaded from the
database. The rendering engine transforms this model into either HTML
for viewing or into Jack’s favourite wiki syntax for editing.

3.3 Parsing Wiki syntax

As explained in the previous section, we need a “true” parser to transform
the wiki markup into a wiki data model.

Firstly, we explain the language theoretic aspects of wiki syntax. We
explain we existing Ruby parser generators are not sufficient for parsing
wiki syntax. We evaluated some Ruby parser generators if they support
unbound lookahead. All evaluated Ruby parser generators, namely Racc7,
a LALR(1) parser generator, and Coco/R(uby)8, a LL(1) parser generator,
do not support unbound lookahead. Thus a new lexer and parser had to be
created. Primary design goals of this parser are:

• Support for most common wiki syntax constructs

• Customisation of tokens

• Parse as much as possible (error tolerant parsing)

Especially the second and third aspect made the utilisation of parser
generator more difficult: Most parser generator need a grammar file con-
taining the tokens to parse. They do not allow to specify the token after
creating a parser. Modifying a generated parser could be an option, but this
approach is not very clean and the fact that we need an unlimited lookahead
for lexical analysis makes the usage of existing lexer / parser generators im-
possible. Thus we decided to handwrite a lexer and a parser to parse wiki
syntax with with customisation support.

3.3.1 Wiki Syntax

Wiki Syntax in general is not very complex. There are a few basic types
of syntax constructs and most wiki markup elements use one of these basic
types with different tokens. These basic syntax constructs are:

7http://i.loveruby.net/en/projects/racc/
8http://www.zenspider.com/ZSS/Products/CocoR/

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 22

• Text delimited by one separator for both start and end of an element.
Example: __underline__. This construct is mostly used for text
formatting.

• Text delimited by two different separators for start and end of an ele-
ment. Example: [Link]. This construct is often used for hyperlinks.

• Text in one line that starts with a certain token. Example:
* list item
This construct is mainly used for lists and headers.

These are the basic concepts that are used for wiki syntaxes. Further
specialisation of these concepts such as labelled links ([WikiPage - a good
page]) or macros can be modelled by firstly using the predefined concepts
and then parse the content of the link by regular expressions or with simple
string manipulation methods.

Error tolerant parsing of wiki content means that all text that is entered
into the wiki has to be parsed, even when it does not contain any correct
wiki markup or all opened tags are not closed. Parts of the input string
that is not recognised as wiki markup keywords are then parsed as text.
This requirement makes parsing wiki markup so difficult: it is not possible
to determine the meaning of a token (if it is a token or plain text) without
looking at the rest of the input character stream. A similar problem is
described in detail in [3]. The following small example demonstrates the
problem: Imagine a wiki where text between ‘[’ and ‘]’ is parsed as a
hyperlink. Now the input string “This is [no link” is parsed character
by character. When reaching the character ‘[’, we can not determine if it is
the opening token of a hyperlink or plain text without any knowledge about
the rest of the input string.

There are numbers of different approaches for dealing with context-
dependent tokens [3]. The authors describe in this article an approach for
parsing with context-dependent tokens. The basic idea is to store all possi-
ble tokens for a given lexeme during the lexical analysis and later (at parsing
time) decide which token to choose. That means that the lexical analysis
produces a sequence of token sets instead of a sequence of tokens.

We develop a context-dependent parsing technique tailored for parsing
wiki markup. The presented algorithm is similar to [3]. The main difference
is that in the present case, we do not need to store multiple possible tokens
for each lexeme because each lexeme in a wiki can have exactly two tokens:
A special wiki token or a text token. Because all lexemes can also produce
a text token, a separate storage of this knowledge is not necessary. We
only store a token sequence containing special wiki tokens. Whenever we
encounter that a special wiki token is not valid, we transform it into a text
token.

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 23

This is __wiki__ text.
Lexer

token sequenceWiki text
Parser

Wiki model

Figure 3.4: Overview of the parsing process. Firstly, the so-called lexer
transforms a character sequence into a shorter token sequence. Then the
parser transforms this token sequence into a parse tree.

This is [no link.

chars = { “[”, “]” }
elm = { Link (“[”, “]”) }

BOL

(a) Sets chars and
elm with sample input
string before begin of
lexing process.

This is [no link.

Text

“This is “

BOL

(b) Step 1

This is [no link.

Text

“This is “

LinkStartBOL

(c) Step 2

This is [no link.

Text

“This is “

LinkStartBOL Text

“no link.“

EOL

(d) Step 3

Figure 3.5: Sample lexer run with input string and generated token sequence.
Arrow marks the current lexer position.

3.3.2 Parsing Process

An important feature of wiki markup is that all characters that are not
recognised as keywords are treated as text. Furthermore, it is more unlikely
that opened syntax elements (brackets) are not closed than they are closed.
These preconditions can help to build an efficient parser. The basic idea is
to build a standard lexer and parser with a small extension: If, at the end
of the input string, a opened syntax element is not closed, a small (constant
time) tree operation on the parse tree is used to convert the wrongly parsed
wiki element into a plain text element. This tree conversion is basically a
simple node deletion followed by a possible merge of neighboured nodes if
one or two neighbours are also text nodes. Overlapping syntax elements are
not supported, the first syntax element is parsed correctly but the second
one is parsed as plain text.

See figure 3.5 and 3.6 for an example lexer and parser run for the input
string “This is [no link”. Before lexing, some initialisation has to be done:
First, the syntax has to be configured, i.e. the tokens for the syntax elements

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 24

are passed to the lexer along with their meaning. In the example, a Link is
the only wiki syntax element used. A link is delimited by [at the begin and
by a] at the end. The definitions for all syntax elements are stored in the
set elm. The lexer then checks the tokens for all single characters that are
used in all tokens. These characters are stored in the set of special characters
chars. Now the lexing process begins. First, a begin-of-line token is written
to the output token stream. Then the first character ‘T’ of the input string
is read. As ‘T’ it is not in the set of special characters, the input string is
read until a special character or a line break is found. The whole substring
‘This is ’ is stored in a new text token and written to the output stream.
The next character ‘T’ is in the set of special characters. Though a token
for the start of a link is written to the output stream. Then, the rest of the
text is written as one text token to the output stream. As the end of the
input string is reached, an end-of-line token is finally written to the output
stream.

Now this token stream can be parsed, i.e. transformed into a parse tree.
For the first two tokens, the begin-of-line token and the first text token,
corresponding nodes are added to the tree (See figure 3.6a). The next token
is the link start token. Now a link node is added to the parse tree and this
node becomes the current node. A pointer to the link node is pushed on top
of a stack that holds all opened syntax elements. Then a node for the start
delimiter [is added as a child of the link node (Figure 3.6b). The next text
token and the end-of-line token are also added as children of the link node
(Figure 3.6c). Now that the end of the input token stream is reached and
no closing token for the link is found, the link node has to be removed from
the parse tree. Therefore the link node itself is removed from the parse tree
and all its children are added as children of the parent node of the removed
link node (Figure 3.6d). Finally, neighboured text nodes are merged into
one text node (figure 3.6e). Now the parsing process is finished and the wiki
markup text has be transformed into a wiki model. In the next two sections,
the implementation of the lexer and the parser are explained more detailed.

3.3.3 Lexical Analysis

Lexical analysis is the processing of a input sequence of characters into a se-
quence of logical units, so-called tokens. This token sequence is then usually
forwarded as input to a parser. Usually, the lexical analyser is generated
by a lexer generator. In the presented system, the lexer is handwritten due
to the need for a configurable syntax. As explained in section 3.3.1, the
meaning of a token cannot be determined without an arbitrary lookahead.
All tokens have either a special meaning (like start token for a header or
hyperlink), or they are plain text. To overcome this problem, each possible
token is treated as a special token by the lexical analyser. Only the parser
decides if it really is a special token, otherwise it is converted to a text to-

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 25

BOL Text

Text LinkStartBOL Text EOL

(a) First parser step

BOL Text

Text LinkStartBOL Text EOL

Link

“This is “ “[“

(b) Second parser step

BOL Text

Text LinkStartBOL Text EOL

Link

“This is “ “[“ Text

“no link.“

EOL

(c) Third parser step

BOL Text

Text LinkStartBOL Text EOL

Text

“This is “ “[“

Text

“no link.“

EOL

(d) Converting wrongly identified link
node into a text node

BOL

Text LinkStartBOL Text EOL

Text

“This is [no link.“

EOL

(e) Merging neighboured text nodes

Figure 3.6: Sample parser run with generated syntax tree and input token
stream (bottom). The arrow at the syntax tree marks the current node, the
arrow at the token stream marks the current position in the token stream.

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 26

Listing 3.1: Lexer class� �
c l a s s Lexe r

$TEXT = : Text
$BOL = :BOL
$EOL = :EOL

de f i n i t i a l i z e ()
@symbo l t ab l e = Hash . new
@symbo l cha r a c t e r s = Set . new

end
end� �

Listing 3.2: Token class� �
c l a s s Token

a t t r a c c e s s o r : type , : l exeme
end� �
ken. Now a detailed description of the lexical analysis algorithm follows.
The code examples are written in a ruby-like pseudo-code.

The lexical analyser is implemented in the Lexer class (see listing 3.1).
First, the lexer class is initialised: Three standard token types that are
independent of the syntax are defined: The text (Text) token type, the begin
of line (BOL) token type and the end of line (EOL) token type. A symbol
table that maps lexemes to token types and a set of symbol characters are
initialised.

A token consists of a type and a lexeme (see listing 3.2). To add a new
user-defined token to the lexer, the add node method that allows to define
the lexeme and the type of this token is defined in the Lexer class (see list-
ing 3.3). For each added token, an entry in the symbol table that maps from
the lexeme to the token name is created. Each lexeme’s character is added
to the set of symbol characters. The method lexical analysis(input)
starts the lexical analysis of the given input string. First, a lexical anal-
ysis is performed, which returns a token sequence. As shown later in this
section, the token sequence can contain multiple text tokens in a row. In

Listing 3.3: Method for adding new tokens to the lexer� �
c l a s s Lexe r

de f add token (lexeme , name)
s ymbo l t a b l e [l exeme] = name
f o r cha r i n lexeme do

s ymbo l c h a r a c t e r s . add (cha r)
end

end
end� �

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 27

Listing 3.4: Wrapper method that performs the lexical analysis and com-
presses the token stream� �
de f l e x i c a l a n a l y s i s (i n pu t)

t oken s equence = compress (l e x (i n pu t))
r e t u r n token s equence

end� �
Listing 3.5: Lexer method� �

1 de f l e x (i n pu t)
t oken s equence = []
t oken s equence << Token . new ($BOL , ’ ’)

i = 0
6 wh i l e i < i n pu t . s i z e

c u r r e n t = i npu t [i] . ch r
i f c u r r e n t == ”\n ” :

t oken s equence << Token . new ($EOL , ”\n”)
token s equence << Token . new ($BOL , ” ”) ;

11 e l s i f s ymbo l c h a r a c t e r s . i n c l u d e ?(c u r r e n t)
token cand = g e t k e ywo r d s t r i n g (i n pu t [i , i n pu t . s i z e])
token = f i n d t o k e n (token cand)
i += token . lexeme . s i z e − 1
token s equence . add (token)

16 e l s e
t e x t = g e t t e x t t o k e n (i n pu t [i , i n pu t . s i z e])
i += t e x t . lexeme . s i z e − 1
token s equence . add (t e x t)

end
21 i += 1

end
token s equence . add (Token . new ($EOL , ”\n ”))
r e t u r n token s equence

end� �
the compress method, these consecutive text tokens are merged into one
text token where the lexemes of the original tokens are concatenated. This
merge is not necessary but it keeps the wiki data model more consistent
to the wiki markup. The lexical analysis itself is done in the lex method
(listing 3.5). First, the output token sequence is initialised with a begin of
line token (line 3). Then, each character from the input string is read in a
loop (line 6 - 7). If the current character is a linebreak, an end of line token
and a begin of line token is added to the token sequence (lines 8 - 10).

If the current character is in the set of symbol characters, it is possibly
the start of a keyword (line 11). In this case, the lexer tries to find a keyword
(line 12). The method get keyword string searches the longest substring
starting from the current character that contains only special characters.
This token candidate is then checked if it is token (line 13). In this case, a
new token instance of the according type is created, otherwise a text token

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 28

is created. If a text token is created, it is possible to have multiple text
tokens in a row, which makes the compress method mentioned earlier rec-
ommendable. Then the new token is added to the token sequence (line 15).

If the current character is neither a newline character nor a special char-
acter, it is treated as text. Therefore all characters that are neither newline
characters or special characters are read from this position and a new text
token is added to the token sequence (lines 17 -19).

Now that the input character sequence is transformed into a token se-
quence, the parser can transform it into a parse tree, as explained in the
following section.

3.3.4 Parser

To obtain a syntax tree that represents the intended structure of the wiki
markup, the token sequence has to be transformed from the token sequence
into the desired syntax tree. In the present case, the syntax tree is repre-
sented by the wiki data model. As explained in section 3.3.1, the system
supports three major syntax concepts. These concepts are:

• Syntax elements with same token for start and end. They are called
symmetric syntax elements.

• Syntax elements with different tokens for start and end. They are
called asymmetric syntax elements.

• Syntax elements that span a whole line and start with a certain token.
They are called line syntax elements.

The parser then can be configured to parse an arbitrary amount of these
syntax elements. Each of these basic syntax elements is defined by its name
and lexemes, one lexeme for symmetric and line syntax elements, two lex-
emes for asymmetric syntax elements. In the initialisation phase, the parse
tree with a root node is created and the current node pointer is set to the
root node. Furthermore an empty stack for opened syntax elements is in-
stantiated and two boolean flags, the begin-of-line (bol) and the special-line
flag, are set to false. The special-line flag is set if the current line is in a
line syntax element. The begin-of-line flag is set if the previous token was
a begin-of-line token. The code in listing 3.6 shows the complete parsing
algorithm.

The parsing process starts in line 5. Each token is read subsequently. If
the current token is a begin-of-line token, the begin-of-line flag is set (line 7)
and the next token is read. Otherwise, if the begin-of-line flag is set, a
begin-of-line node is added to the parse tree as a child of the current node
(line 9). If the current token is a text token, a new text node is added to
the current node (line 12 - 13). If the current token is an end-of-line token
and the special-line flag is set, the corresponding opening token is searched

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 29

Listing 3.6: Main parser method� �
de f p a r s e t o k e n s t r e am (token s t r eam)

bo l = f a l s e
s p e c i a l l i n e = f a l s e
f o r token i n token s t r eam

5 i f (token . type == $BOL)
bo l = t r u e

e l s e
i f bo l

a dd t e x t node (BOLNode . new ())
10 end

i f token . type == $TEXT
te x t nod e = TextNode . new (token . lexeme)
add t e x t node (t e x t nod e)

e l s i f token . type == $EOL
15 i f s p e c i a l l i n e

f i n d l i n e o p e n i n g t o k e n a n d c l e a n u p ()
s p e c i a l l i n e = f a l s e

e l s e
add t e x t node (EOLNode . new ())

20 end
e l s e

e l ement = g e t s y n t a x e l em e n t f o r t o k e n (token)
i f e l ement . i n s t a n c e o f ?(Symmetr icSyntaxElement)

p o s i t i o n = s e a r c h s y n t a x e l em e n t i n s t a c k (e l ement)
25 i f p o s i t i o n == −1

add node (Node . new (e l ement))
e l s e

f i n d o p e n i n g t o k e n a n d c l e a n u p (e l ement)
end

30 e l s i f e l ement . i n s t a n c e o f ?(L ineSyntaxE l ement)
i f bo l

s p e c i a l l i n e = t r u e
add node (Node . new (e l ement))

e l s e
35 add t e x t node (TextNode . new (e l ement . token))

end
e l s e

i f i s s t a r t t o k e n (token)
add node (Node . new (e l ement))

40 e l s e
p o s i t i o n=s a r c h s y n t a x e l em e n t i n s t a c k (e l ement)
i f p o s i t i o n == −1

add t e x t node (TextNode . new (e l ement . end token))
e l s e

45 f i n d o p e n i n g t o k e n a n d c l e a n u p (e l ement)
end

end
end

end
50 bo l = f a l s e

end
end
c l eanup ()
r e t u r n @root

55 end� �

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 30

Listing 3.7: Method for adding a node into the syntax tree� �
de f add node (node)

node . pa r en t = @cur r en t node
@cu r r en t node . c h i l d r e n . add (node)
@stack . push (node)
@cu r r en t node = node

end� �
Listing 3.8: Method that searches the stack for a specified syntax element� �
de f f i n d o p e n i n g t o k e n a n d c l e a n u p (s yn t a x e l emen t)

wh i l e ! @stack . empty?
node = @stack . pop ()
i f node . s y n t a x e l emen t == syn t a x e l emen t

@cu r r en t node = node . pa r en t
r e t u r n

e l s e
c o n v e r t t o t e x t n o d e (node)

end
end
i f @stack . empty? &&

syn t a x e l emen t . i n s t a n c e o f ?(Asymmetr icSyntaxElement)
t e x t nod e = TextNode . new (s yn t a x e l emen t . end token)
t e x t nod e . pa r en t = @cur r en t node
@cu r r en t node . c h i l d r e n . add (t e x t nod e)

end
end� �
on the stack and all elements above the searched token in the stack are
converted to text nodes. That means that all opened syntax elements that
are not closed in a special line are treated as text (line 16). The special-line
flag is unset (line 17). If the special-line flag is not set, an end-of-line node
is added to the parse tree (as a child of the current node) (line 19).

If the current token is a opening or closing token of a syntax element
(line 21), it is checked if it is a token for a symmetric syntax element (line 23).
In that case, the stack is searched for a node of this syntax element. If no
node is found (line 25), a new node is added to the syntax tree, even if it
is not sure that an closing token will be found later. This is done by the
add node method shown in listing 3.7. To add a new node to the syntax
tree, the new node’s parent is set to the current node, it is added to the
children of the current node and it is pushed onto the stack. Finally, the
new node becomes the current node.

If an opening node is found (line 28), find opening token and cleanup
is called (see listing 3.8. This method searches the stack from top for the
specified syntax element and converts each node that is over the searched
node to a text node. If the node is found, its parent becomes the current
node. in the case that the stack is empty and the syntax element is an
asymmetric syntax element, i.e. a corresponding opening node could not be

3. Personalised Wiki Syntax
3.3. Parsing Wiki syntax 31

Listing 3.9: Cleanup method� �
de f c l eanup ()

wh i l e ! @stack . empty?
n = @stack . pop ()
c o n v e r t t o t e x t n o d e (n)

end
end� �
found, the closing token is converted to a text node and this text node is
added to the parse tree.

If a token of a line syntax element is found (line 30), the begin-of-line
flag is checked. If it is set, the special-line flag is set and a new node is
added to the parse tree by calling the add node method described earlier in
this section. If the begin-of-line flag is not set, a text node containing this
token is added to the syntax tree (line 35).

If the token is the start token of an asymmetric syntax element, a new
node of that syntax element is added to the syntax tree (line 39). If it is the
end token, the stack is searched for the corresponding syntax element and if
none is found, a text node containing the closing token is added to the parse
tree. If the corresponding node is found, all nodes above this node in the
stack are converted to text nodes (line 45). If the current token is no begin-
of-line token, the begin-of-line flag is unset. Then the cleanup method is
called (listing 3.9). It converts all nodes on the stack to text nodes. Finally,
the complete syntax tree is returned.

This section presented algorithms for parsing arbitrary Wiki syntax with
customisable syntax elements and tokens. Existing parser generators could
not be used for two reasons: First, parser generators are static, they gen-
erate the parsers, thus some kind of reflection would be necessary to allow
customisable tokens. Secondly, existing parser generators (in Ruby) do not
allow arbitrary lookahead, which is necessary to determine if a token has to
be parsed as a token for wiki syntax or if it has to be parsed as text. We
therefore manually implemented a personalisable parser for wiki markup.
The lexical analyser of this parser treats each lexeme as a potential special
wiki token. The parser then decides if this token is correct, otherwise each
incorrect token is converted to a text token.

The complete parser’s source code can be browsed online on the wiki
project site9 or downloaded10.

9http://code.launchpad.net/~sebastian-gerke/swee/semperwiki
10http://m3pe.org/~sebastian/wiki_model.zip

http://code.launchpad.net/~sebastian-gerke/swee/semperwiki
http://m3pe.org/~sebastian/wiki_model.zip

32

Chapter 4

Reusing Desktop Data

Much data, especially for personal information management, is already avail-
able on the desktop. If a user wants to refer to this data, he has to re-enter all
the metadata. Therefore, an import function for common desktop data like
e-mails, instant messaging data, text documents, bibtex files, calendar data
and address book data would be a benefit. Users could drag and drop data
from the desktop and from other applications into their semantic authoring
application and all file metadata can be either stored in the application or
linked so that a change in that data would also be visible for the user in his
application.

Imagine we want to add a comment about a paper: we might want to
annotate that it belongs to a certain project, that response is due on a
certain date or that we like it. To refer to this paper, we currently have
to describe and annotate it with metadata like title, author, creation date:
metadata that already exists in the document itself.

In this chapter, we propose an architecture for integration of desktop
data into semantically enabled applications. Furthermore, we present an
exemplary mapping from existing desktop data to RDF data.

4.1 Overview

Aggregating existing data and metadata from the desktop has been done
by both semantic desktop implementations and by (non-semantic) desktop
search engines like Beagle1, Google Desktop2, Copernic Desktop Search3,
Microsoft Windows Desktop Search4 or Apple Spotlight5. These desktop
search engines index existing data and related metadata from text files, e-

1http://beagle-project.org/
2http://desktop.google.com/
3http://www.copernic.com/
4http://www.microsoft.com/windows/desktopsearch/default.mspx
5http://www.apple.com/macosx/features/spotlight/

http://beagle-project.org/
http://desktop.google.com/
http://www.copernic.com/
http://www.microsoft.com/windows/desktopsearch/default.mspx
http://www.apple.com/macosx/features/spotlight/

4. Reusing Desktop Data
4.2. Related Work 33

mails, media files etc. These desktop search engines allow a keyword search
in data and metadata. Additionally, they allow for more advanced queries
like searching for different criteria of e-mails (e.g. sender, recipient, date)
files (e.g. size, modification time, type) and media (e.g. artist, bitrate).

These desktop search engines only allow retrieving desktop data. Seman-
tic desktop applications like Gnowsis6 and Haystack7 provide more advanced
features like referencing documents, better integration and aggregation of
different documents. They try to completely hide the file system from the
user and allow the user to organise data completely free, without any re-
strictions that the exclusive usage of file systems implies.

4.2 Related Work

Gnowsis and Haystack, two semantic desktop applications, are using existing
metadata from the desktop through adapters for different data.

Gnowsis [33] uses a similar adapter approach to access metadata from
desktop applications, external data sources like SQL servers, IMAP servers
etc. Gnowsis distinguishes between three different adapter types: graph
and query adapters, concise bound description adapters and file extractors.
Graph and query adapters provide either a RDF graph representation or
a query language like SPARQL or RDQL. These adapters return a list of
statements that match the given query. Concise bound description adapters
return a small subgraph that describe the properties of one resource, given
the resource’s URI. File extractors read a file, parse its content and extract
some metadata. File extractors are similar to the adapter technique used
in our system. Our system does not distinguish between different adapter
types, they all expose an RDF graph.

In Haystack, adapters are called Observers. They “act as transparent in-
termediaries between the user and external information sources” [1]. They
are implemented as proxies that observe the network communication from
client applications. This reduces the number of observers as different appli-
cations for the same domain use the same network protocol. For example,
only one proxy for HTTP data has to be written to observe the user be-
haviour in different web browsers. Additionally, a crawler traverses the
user’s files periodically.

4.3 Architecture

A major design goal was the transparent usage of existing metadata within
ActiveRDF (see section 2.3 for details about ActiveRDF). A developer

6http://www.gnowsis.org
7http://haystack.lcs.mit.edu/

http://www.gnowsis.org
http://haystack.lcs.mit.edu/

4. Reusing Desktop Data
4.4. Prototype Implementation 34

Application

Object Manager

Query Engine

Federation

Adapter 1

Data store 1

Adapter 2

Data store 2

...
Adapter d1

Desktop
application

Ac
tiv
eR
D
F

Figure 4.1: Architecture of ActiveRDF with adapters to desktop applica-
tions

should be able to access existing metadata from the desktop, which is usu-
ally not available in RDF, as if it were stored in a RDF graph. Figure 4.1
shows the architecture of ActiveRDF with additional adapters for desktop
import. The figure shows that the access to desktop metadata is completely
transparent for applications that use the object manager as well as for those
using the query engine. With this architecture, external metadata from
the desktop is not duplicated within ActiveRDF. This avoids the need for
synchronisation between ActiveRDF and external data sources. In addition
to adapters to triple stores, adapters that provide access to desktop data
must map the mostly non-RDF data to an RDF ontology. It is possible to
create a dedicated ontology for each specific application to allow an easy
mapping between the application and ActiveRDF. It is also possible to use
existing popular ontologies that are widely used for specific domains (e.g.
the Friend-of-a-Friend8 ontology for address book data, the SIOC9 ontology
for newsgroup and forum posts). We decided to user the latter approach
to ensure a more application independent representation on the ActiveRDF
side. We can change the underlying desktop application (in the same do-
main) without changing any application, only the different data source has
to be configured.

4.4 Prototype Implementation

We implemented an adapter to the Evolution Personal Information Man-
agement application for Linux as a proof of concept. It allows the user to
access the Evolution address book via ActiveRDF. It exposes the address
book data over the FOAF vocabulary. An Evolution specific extension en-

8http://foaf-project.org/
9http://www.sioc-project.org/

http://foaf-project.org/
http://www.sioc-project.org/

4. Reusing Desktop Data
4.4. Prototype Implementation 35

Class Evolution Property RDF Property

uid (string) (URI)

firstname (string) foaf:givenname, foaf:name

lastname (string) foaf:surname, foaf:name

title (string) foaf:title

email addresses foaf:mbox

(Hash "OTHER"->Array[string])

email addresses activerdf:homeMbox

(Hash "HOME"->Array[string]) (rdfs:subPropertyOf foaf:mbox)

email addresses activerdf:workMbox

C
o
n
t
a
c
t

(Hash "WORK"->Array[string]) (rdfs:subPropertyOf foaf:mbox)

birthday (Time) foaf:birthday (Literal (mm-dd))

home phone activerdf:homePhone

(rdfs:subPropertyOf foaf:phone)

work phone activerdf:workPhone

(rdfs:subPropertyOf foaf:phone)

mobile phone activerdf:mobilePhone

(rdfs:subPropertyOf foaf:phone)

im addresses See ContactIMAddress section
(Array[ContactIMAddress])

provider (string) foaf:OnlineChatAccount

address, provider == ’AIM’ foaf:aimChatID

address, provider == ’Jabber’ foaf:jabberID

address, provider == ’Yahoo’ foaf:yahooChatID

address, provider == ’MSN’ foaf:msnChatID

address, provider == ’ICQ’ foaf:icqChatID

address, provider == ’Groupwise’ not mapped

C
o
n
t
a
c
t
I
M
A
d
d
r
e
s
s

Figure 4.2: Mapping from Evolution contacts to RDF data.

4. Reusing Desktop Data
4.4. Prototype Implementation 36

sures a more complete mapping to RDF. Instances of Evolutions Contact
class are mapped to RDF resources whose rdfs:type is foaf:Person.

Figure 4.2 shows a detailed specification of the mapping from Evolution
classes and attributes to FOAF (RDFS) classes and properties. Some Evo-
lution attributes such as firstname, lastname and title can be directly
mapped to according FOAF properties. For other attributes like e-mail
addresses or phone numbers it is necessary to create subclasses of existing
foaf properties to ensure that no information from Evolution is lost. If we
would map each email address directly to FOAF properties, the distinction
between home and work email addresses is lost. To circumvent this, the
additional properties activerdf:homeMbox and activerdf:workMbox are
created. They are subproperties of foaf:mbox, so an application using the
generated data does not need to know about these Evolution-specific prop-
erties. The address data of Evolution’s Contact class cannot be mapped
to FOAF properties, thus they are not listed here. A mapping of these at-
tributes to other ontologies, especially the vCard ontology10, is possible but
not implemented in the present case.

The following listing shows a sample query with ActiveRDF against the
Evolution address book.� �
Connect ionPoo l . add (: t ype => : e v o l u t i o n)
ObjectManager . c o n s t r u c t c l a s s e s
s e b a s t i a n = Person . f i n d b y f i r s t n a m e (’ Seba s t i an ’)
p r i n t s e b a s t i a n . f i r s t n ame
p r i n t s e b a s t i a n . l a s tname
p r i n t s e b a s t i a n . mbox� �

First, the Evolution adapter is initialised (line 1) and the object manager
constructs the class hierarchy (line 2). Then the address book is queried for
a person whose first name is “Sebastian” (line 3). Finally, we print the full
name and the e-mail address of Sebastian (lines 4-6). The output of this
snippet is:� �
Seba s t i a n
Gerke
s e b a s t i a n . g e r k e@de r i . o rg� �

In this chapter, we presented an architecture for a seamless integration
of desktop data into ActiveRDF. We compared the architecture to other
semantic desktop application’s desktop integration architectures. Finally,
we presented an example mapping of Evolution address book entries to
FOAF persons and gave an example on how to query Evolution data from
within ActiveRDF.

10http://www.w3.org/2006/vcard/ns

http://www.w3.org/2006/vcard/ns

37

Chapter 5

Annotation Extraction

In Semantic Wikis, users probably first enter the content in natural language
text and then they possibly create additional semantic annotations based on
the text they typed. To help the user creating these semantic annotations,
we developed a suggestion system. This system suggests annotations based
on the existing text. Then these suggestions can be confirmed and filled with
the appropriate values. The suggestion system presented in this chapter is
very simple to ensure a low resource consumption (memory- and time-wise).
It is based on keyword matching in RDF schemas.

5.1 Related Work

Many work exists in the area of natural language processing and semantic
authoring. Several approaches exist to extract semantic annotations from
text. Some of them extract named entities or try to derive complete ontolo-
gies from text [22]. Other approaches use controlled languages (i.e. natural
language with a simplified grammar and vocabulary) for semantic author-
ing [10].

5.2 Implementation

We implemented a prototype that demonstrates a basic algorithm for anno-
tation suggestion based on natural language. Listing 5.1 shows the algorithm
in detail.

First, the last sentence from the wiki text is extracted (line 2). Then, a
list of keywords is extracted from the last sentence (line 3). This is done by
an external part-of-speech tagger1. The verbs and nouns from the sentence
form the keyword list. Then the keywords are concatenated with a space

1http://www.markwatson.com/opensource/

5. Annotation Extraction
5.3. Outlook 38

Listing 5.1: Method for generating suggestionsMethod for generating sug-
gestions� �
de f g e n e r a t e s u g g e s t i o n s ()

s en t en c e = g e t l a s t s e n t e n c e ()
keywords = ge t noun s and v e r b s (s en t enc e)
q u e r y t e x t = keywords . j o i n (’ ’)
i f q u e r y t e x t . s i z e > 0

query = Query . new . d i s t i n c t (: p red)
. where (: pred ,

Namespace . l ookup (: rd f , : t ype) ,
Namespace . l ookup (: rd f , : P rope r t y))

. where (: pred , : keyword , q u e r y t e x t)
s u g g e s t i o n s = query . e x e cu t e

end
end� �
character (line 4). This string is then used to perform an ActiveRDF key-
word search on all properties in loaded schemas (line 6 – 11). ActiveRDF
searches all literals that are attributes of instances of the rdfs:Property
class.

Figure 5.1 shows the prototype that uses the presented algorithm. It
consists of three major components: A text field for entering a schema
URL, a text area for the wiki text and a list that contains the suggested
predicates. The user can manually request a suggestion with a button at
the bottom of the program window. But suggestions are not only generated
on request but also generated automatically after a certain time of typing
inactivity. A double-click on a suggestion adds this predicate to the wiki
text and moves the cursor behind the new predicate to allow entering the
value of this predicate.

5.3 Outlook

The existing prototype provides only basic functionality to demonstrate the
potential benefit of such an suggestion system. Further improvements are
necessary to ensure a greater benefit from such a system. A possible im-
provement is the usage of a thesaurus. With a thesaurus, different words
with a same or similar meaning would yield a suggestion. Another option
is the restriction to the rdfs:label of a predicate instead of searching in
all attributes of a predicate. This would yield a higher precision, because
especially the rdfs:comment attribute can contain many words that are not
synonyms for the desired attribute.

Another direction of improvement is the usage of training data to learn
rules for annotation suggestion from natural language. This would require
more effort to create the training sets for different ontologies manually. For
each ontology, a training set has to be created. Techniques like those used

5. Annotation Extraction
5.3. Outlook 39

Figure 5.1: User interface of the annotation extractor prototype

in [9], [35] are options for such a machine learning approach. These are
information extraction methods for free text.

40

Chapter 6

Collaborative Annotations

The Semantic Web is decentralised in terms of autonomy, allowing everyone
to make any statement, but centralised in terms of vocabulary: others can
only understand statements that use familiar terminology. Given this sit-
uation, we consider the following problem: how to ensure that individuals,
free to use arbitrary terminology, converge towards shared vocabularies?

As a particular use case we consider authoring in Semantic Wikis [28, 30,
38]. These enhanced Wikis allow users to describe information both in free
text and through semantic descriptions. Allowing users to make arbitrary
statements is important, since it ensures domain-independence of the Wiki.

Without further considerations, the authoring freedom in Semantic Wi-
kis would result in statements with different vocabularies, defying the pur-
pose of the Semantic Wiki. A terminology policy could be enforced but
that would highly restrict users. A suggestion mechanism, recommending
terminology based on the dataset, would help converge terminology without
forcing users, as demonstrated in collaborative tagging [21, 24].

In collaborative data entry, participants construct a dataset by continu-
ously and independently adding further statements to existing data. Each
participant faces the question: when creating Semantic Web data, which vo-
cabulary to use? To ensure convergence, the answer is: use the most relevant
and frequently occurring vocabulary.

Finding the most frequent vocabulary is straightforward: one can simply
count the occurrences. We therefore focus on finding the relevant vocabu-
lary. Datasets typically contain heterogeneous data. Finding the vocabulary
that is relevant for one resource therefore means: finding similar resources
and use their vocabulary.

Problem statement Our problem is thus to suggest relevant and frequent
terminology for extending a resource in an RDF dataset based on similarity
with other resources and our question is how well simple algorithms solve
this problem?

6. Collaborative Annotations
6.1. Classification-based algorithm 41

john

"John Doe"

name

...

knows

...

knows

...

homepage

pelican
brief

title

author

"John Grisham"

"The Pelican Brief"

stefan

"Stefan Decker"

name

Figure 6.1: Example knowledge base

We present two algorithms that address this problem, based on the fol-
lowing hypotheses that simple algorithms do well enough: (a) computing re-
source similarity based only on outgoing arcs yields good results; (b) approx-
imating resource similarity through pairwise predicate co-occurrence yields
good results.

We will present the two algorithms in sections 6.1 and 6.2, and their im-
plementation in section 6.3. We verify our hypotheses and the performance
of these algorithms empirically in section 6.4. We conclude with a discussion
of related work in section 6.5.

6.1 Classification-based algorithm

The task of the suggestion algorithm is to find, for a certain resource in
focus, predicates to further describe that resource. The general idea of the
classification-based algorithm is to divide the knowledge base in two groups,
those similar to the current resource and those not similar, and to suggest
the frequently occurring predicates from the similar group.

For example, figure 6.1 shows a simple knowledge base with three re-
sources: the person “John”, with his name, some friends, and homepage,
the book “The Pelican Brief”, with its title and author, and the person
“Stefan”, with his name. We want to suggest relevant predicates for “Ste-
fan” based only on the given graph.

The algorithm consists of two steps, as shown in listing 6.1. In the first
step, we divide all existing resources in the knowledge base into two sets,
the similar and dissimilar ones. In the second step, we look at all predicates
from the similar group and rank them using a ranking function. In the
remainder of this section, we explore each step in more detail: how to define
similarity between resources, and how to rank the selected predicates.

6. Collaborative Annotations
6.1. Classification-based algorithm 42

Listing 6.1: Classification-based algorithm� �
def s ugge s t (r , r e s o u r c e s)

s e l e c t s i m i l a r r e s o u r c e s
s i m i l a r r e s o u r c e s =

r e s o u r c e s . s e l e c t { | r ’ | s i m i l a r i t y (r , r ’) > t h r e s h o l d }

then c o l l e c t a l l p r e d i c a t e s from s i m i l a r r e s o u r c e s
c and i d a t e s = s i m i l a r r e s o u r c e s . c o l l e c t { | r ’ | r ’ . p r e d i c a t e s }

then rank a l l c and i d a t e p r e d i c a t e s
r e t u r n rank (c a nd i d a t e s)

end� �
6.1.1 Preliminaries

In addition to the definition of a RDF graph in section 2.1.2, we define some
more sets:

Definition 3 (Outgoing edges) The set of outgoing edges Eo(v) of a ver-
tex is defined as: Eo(v) = {e ∈ E|source(e) = v} ⊆ E. The bag of labels
L(E) of a set of edges is defined as L(E) = [l(e)|e ∈ E]. The bag of la-
bels Lo(v) of outgoing edges of a vertex v is defined as Lo(v) = L(Eo(v)).
The set of outgoing edges of v whose label is l is defined as Eo(v, l) =
{e ∈ Eo(v)|l(e) = l}.

6.1.2 Classification step

In the first step, we classify resources into those similar to the current one,
and those not similar. The main requirement for the similarity metric is
domain-independence: the algorithm should not rely on domain-specific
knowledge. We use two well-known, widely used generic similarity met-
rics [8, 11]: the containment of one resource in another and their mutual
resemblance.

Since we are interested in suggesting new predicates, we use these met-
rics to compare existing predicates of resources. Containment thus defines
resource similarity as the amount of predicates of the first resource that are
also contained in the second resource, as shown in equation (6.1). Resem-
blance measures how many of all predicates used in at least one of the two
resources are used in both resources, as shown in equation (6.2). For ex-
ample, in figure 6.1, the resource “Stefan” uses the predicate “name” and
the resource “John” uses “name”, “knows” and “homepage”, resulting in a
containment value (of “Stefan” in “John”) of 1 and a resemblance of 1

3 .

sc(v′, v) =
|O(v) ∩O(v′)|

|O(v)|
(6.1)

6. Collaborative Annotations
6.1. Classification-based algorithm 43

sr(v′, v) =
|O(v) ∩O(v′)|
|O(v) ∪O(v′)|

. (6.2)

Since predicates can have multiple values, when computing this contain-
ment or resemblance metrics we need to decide whether to count multiple
predicate occurrences once or several times.

In the example, the resource “John” uses the “knows” predicate twice
with different values; we can either count these two occurrences only once,
thus using O(v) as a set, as shown in equation (6.3). The resemblance
between “Stefan” and “John” would then be 1

3 . But we could also count
each occurrences separately, using O(v) as a bag as shown in equation (6.4),
yielding a resemblance of 1

4 .

Os(v) = {l(e)|e ∈ Eo(v)} (6.3)

Ob(v) = [l(e)|e ∈ Eo(v)] (6.4)

If we generalise from these two choices, the result of the first phase is
the set of similar resources Vs(v), as defined in equation (6.5), where st is
some similarity threshold and s(v, v′) is either resemblance or containment
measure. For example, with a threshold of 0.9 the set of similar resources
to “Stefan” would consist only of the resource “John”.

Vs(v) = {v′ ∈ V : s(v, v′) ≥ st} (6.5)

6.1.3 Ranking step

After classifying all resources into two groups we collect all predicates from
the set of similar resources Vs(v) and use them as candidates for the sugges-
tion. Since there might be many candidates, we need to rank these candi-
dates and suggest the more useful predicates first. The most straightforward
ranking function is based on the occurrence frequency of these predicates in
the set of similar resources.

In this example, since only the resource “John” is similar to “Stefan”,
the candidates would be “knows” and “homepage”, ignoring the predicates
that “Stefan” uses already. Out of these two candidates, “knows” would be
ranked first since it appears most frequently.

But again, since predicates in RDF can be multi-valued, we can define
the (relative) occurrence frequency of a label l in the set of similar resources
Vs(v) in two ways. We can either count each predicate occurrence, as shown
in equation (6.6). Or we can count each occurrence only once, or stated
differently, count the set X of resources that use l in their outgoing edges
and divide them by the total number of resources, as shown in equations

6. Collaborative Annotations
6.1. Classification-based algorithm 44

(6.7). In the latter case, “knows” and “homepage” would be ranked the
same since they are both used by one resource.

rv(e) = fp
s (v, l) =

∑
v′∈Vs(v) |Eo(v′, l)| · w(v, v′)∑
v′∈Vs(v) |Eo(v′)| · w(v, v′)

(6.6)

rv(e) = f r
s (v, l) =

∑
v′∈X w(v, v′)∑

v′∈Vs(v) w(v, v′)

X = {v ∈ Vs(v)|l ∈ O(v)} (6.7)

In both methods of counting, we could allow for a weighting factor
w(v, v′). The reason for this is that even in the set of similar resources
Vs(v), some are more similar than other: in ranking the predicates, it would
be natural to “promote” the predicates from similar resources over those
from less similar resources. If we choose to prefer predicates from resources
more similar to v, the weight factor could be given by the resource sim-
ilarity, shown in equation (6.8). A simpler approach would not to weigh
the predicates, as shown in equation (6.9). In our example, these methods
would yield the same ranking since both candidates originate from the same
resource “John”.

ws(v, v′) = s(v, v′) (6.8)

wc(v, v′) =
{

1 : v′ ∈ Vs(v)
0 : v′ ∈ Vn(v)

(6.9)

6.1.4 Qualitative results

To investigate our hypothesis, we have evaluated the performance and qual-
ity of the algorithm using various different datasets. We are interested in
the quality of the basic algorithm (using containment, counting multi-valued
predicates only once, and without weighting) and in whether the various pa-
rameters, while reducing simplicity, improve the basic algorithm. We present
and discuss these results in section 6.4.

6.1.5 Performance

Regarding the runtime performance of the algorithm, we can analyse the
description in listing 6.1. We see that, ignoring data access, the overall
algorithm should run linearly to the number of resources: The first phase,
classifying the similar resources, runs linear to the number of resources r and
the average number of predicates per resource p: comparing the similarity
of each resource against the one resource in focus by comparing all their
predicates. The second phase, ranking, is linear in the number of candidates

6. Collaborative Annotations
6.2. Co-occurrence-based algorithm 45

c. The complete algorithm would therefore run in O(r ·p+c), which is linear
in r, since p will be constant on average and c is presumably smaller than r.

However, in practise we cannot ignore lookup performance on large
datasets. To compute similarity, we need to lookup all predicates of each
resource. Depending on the lookup performance of the used data store, this
could cause the whole algorithm to run logarithmic or even quadratic to
the size of the dataset, rendering the algorithm impracticable for reasonably
large datasets.

A simple solution would be to materialise the similarity between re-
sources in memory, obliterating the need for data lookup during suggestion
time. Direct materialisation however has two problems: the required mem-
ory space would be quadratic in the size of the dataset, and updating one
resource (prone to happen often in a data entry scenario) would require
recalculation of all similarity values with respect to this resource.

The next algorithm remedies exactly this problem and allows materiali-
sation without large memory requirements.

6.2 Co-occurrence-based algorithm

The general idea of the co-occurrence-based algorithm is to approximate
resource similarity through the co-occurrence of predicates. Since usually
datasets contain far less predicates than resources, predicate co-occurrence
requires far less space than resource similarity. We then further reduce the
required space by not considering the complete power set over all predicates,
but instead approximate full co-occurrence through binary co-occurrences.
We thus consider only pairwise occurrences of predicates, suggest predi-
cate candidates for each pairwise occurrence, and combine these candidates
through intersection.

We therefore make two assumptions on the probabilistic model of the
dataset: (1) that predicate co-occurrence correlates with resource similarity,
and (2) that considering binary predicate co-occurrences to be independent
events (which they are not) yields acceptable predictions. The latter allows
us to pairwise consider binary co-occurrences instead of all permutations.

The algorithm is based on association rule mining [2, 36] used for recom-
mendations in e.g. online stores: when buying one book, other books that
are often bought together with this book are recommended. In our case,
books are replaced by predicates and shopping transactions by resources.

6.2.1 Precomputation step

To better show the details of the algorithm, we extend our earlier example,
adding the person “Sebastian” and some more statements about John, as
shown in figure 6.2. Again, we want to suggest further predicates to the
resource “Stefan”.

6. Collaborative Annotations
6.2. Co-occurrence-based algorithm 46

john

"John Doe"

name

Person

type

...
knows

...
knows

...

homepage

firstname

"John"

sebastian

"Sebastian Gerke"

name

Person

type

...

homepage

pelican
brief

title

author

"John Grisham"

"The Pelican Brief"

stefan

"Stefan Decker"

name

...

homepage

Figure 6.2: Extended Knowledge Base

predicate freq.
type 3
name 2
knows 1
homepage 2
firstname 1
author 1

(a) occurrence

ty
pe

na
m

e

kn
ow

s

ho
m

ep
ag

e

fir
st

na
m

e

au
th

or

type 3 2 1 2 1 1
name 2 2 1 2 1 0
knows 1 1 1 1 1 0
homepage 2 2 1 2 1 0
firstname 1 1 1 1 1 0
author 1 0 0 0 0 0

(b) co-occurrence

Table 6.1: Predicate occurrence and co-occurrence frequency

In the first step we calculate usage statistics of predicates in the knowl-
edge base. We count for each predicate, the resources that use this predicate,
defined in equation (6.10). Secondly, we count for each pair of predicates,
the number of times they co-occur together in the same resource, as defined
in equation (6.11). The particular statistics for the example in figure 6.2 are
given in table 6.1a and table 6.1b.

occ(p) = | {v ∈ V |p ∈ Lo(v)} | (6.10)

coocc(p1, p2) = | {v ∈ V |p1 ∈ Lo(v) ∧ p2 ∈ Lo(v)} | (6.11)

6.2.2 Suggestion step

In the second step, we compute suggestions for a given resource. We consider
all predicates in the knowledge base that occur more than once with each of

6. Collaborative Annotations
6.2. Co-occurrence-based algorithm 47

candidate name homepage confidence
type 1.0 1.0 1.0
knows 0.5 0.5 0.25
firstname 0.5 0.5 0.25

Table 6.2: Relative co-occurrence ratios for Stefan

the predicates from “Stefan” as suggestion candidates, as defined in equation
(6.12). In our example, the predicates “type”, “knows”, and “firstname” are
candidates for the resource “Stefan”.

cooccurring(p1) = {p2 : coocc(p1, p2) > 1} (6.12)

For each candidate we calculate our confidence in suggesting it. As
shown in equation (6.13), the confidence for suggesting a predicate p for
a selected resource r, is formed by combining the confidence for p from
each of r’s predicates pi. In the earlier example, the total confidence for
suggesting “type” is computed by combining confidence(name ⇒ type)
and confidence(homepage ⇒ type).

confidence(p, r) =
∏

pi∈cooccurring(p)∩Lo(r)

confidence(pi ⇒ p) (6.13)

Each constituent is computed as shown in equation (6.14): the confi-
dence for suggesting any p2 based on the existence of a p1 is given as the
co-occurrence frequency of p1 and p2 relative to the occurrence frequency of
p1 by itself. In our example, p2, the candidate, would be “type”, “knows”, or
“firstname”, and p1, the existing predicates, would be “name” and “home-
page”. Intuitively, we consider a relatively frequent co-occurrence as evi-
dence for predicting p2.

confidence(p1 ⇒ p2) =
coocc(p1, p2)

occ(p1)
(6.14)

In our example, as shown in table 6.2, “type” co-occurs with both pred-
icates of “Stefan” 100% of the time, whereas the two other candidates
(“knows” and “firstname”) co-occur only 50% of the time with each of
the predicates of “Stefan”. We rank each candidate by the combined (un-
weighted) confidence: in this example, “type” will be ranked first, with a
combined confidence of 100%, and the other two second, with a combined
confidence of 25%.

6. Collaborative Annotations
6.3. Implementation 48

Listing 6.2: Co-occurrrence as database views� �
c r ea t e view o c cu r r e n c e as
s e l e c t p , count (d i s t i n c t s) as count
from t r i p l e
group by p ;

c r ea t e view cooc cu r r e n c e as
s e l e c t t0 . p as p1 , t1 . p as p2 , count (d i s t i n c t t0 . s) as count
from t r i p l e as t0 j o i n t r i p l e as t1 on t0 . s = t1 . s and t0 . p != t1 . p
group by t0 . p , t1 . p� �

6.3 Implementation

We have implemented both algorithms in Ruby. We use the ActiveRDF
[29] data store abstraction layer which allows us to run this algorithm on
various RDF data stores. The implementations are distributed as part of
the ActiveRDF. We have also implemented the co-occurrence algorithm as
a wrapper for an RDF data store, in particular for the rdflite1 RDF store.

Since rdflite uses a relational database with one table, triple(s,p,o),
we have implemented the (co)occurrence statistics as views on this database,
comparable to [18]. Depending on the relational database, these views can
be materialised or computed for each suggestion. The views, shown in list-
ing 6.2, are a straightforward translation of the equations (6.10) and (6.11)
given before.

6.3.1 Example suggestions

Figure 6.3 shows an example of our suggestion system, for a randomly chosen
resource from a dataset2 about the Mindswap research group. The resource
(a blank node representing Dan Connolly) and its predicates, such as name
and email address, are listed on the left-hand side. Our suggestions, based
on the other resources in this dataset, are listed in ranked order on the
right-hand side.

6.4 Evaluation

A predicate suggestion system is a kind of recommender system, using
the opinions of a community to help individuals decide between a poten-
tially overwhelming set of choices [16, 32]. In our case, this “potentially
overwhelming set of choices” is formed by the terminology (ontologies or
schemas) available.

1http://wiki.activerdf.org/rdflite/
2http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf

http://wiki.activerdf.org/rdflite/
http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf

6. Collaborative Annotations
6.4. Evaluation 49

� �
:#1 f o a f : name Dan Conno l l y .
:#1 owlweb : name Dan Conno l l y .
:#1 f o a f : mbox ma i l t o : conno l ly@w3 . org .
:#1 owlweb : ema i l ma i l t o : conno l ly@w3 . org .
:#1 owlweb : homepage

h t tp : // owl . mindswap . org /˜danC/ .
:#1 r d f : t ype owlweb : Fam i l yF r i e nd .� �� �

1 . f o a f : workInfoHomepage
2 . f o a f : homepage
3 . owlweb : personalHomepage
4 . owlweb : bache lo r sFrom
5 . owlweb : mastersFrom
6 . owlweb : homepage
7 . f o a f : n i c k
8 . owlweb : phdFrom� �

Figure 6.3: Suggested predicates (bottom) for example resource (top)

Evaluations of recommender systems can be divided into two categories
[14, 16]: when regarding recommendations as an information retrieval prob-
lem (selecting the interesting predicates from all possible predicates), evalu-
ation is usually performed off-line, focused on accuracy, and measured using
precision and recall. When, on the other hand, recommendation is ap-
proached as a machine learning regression problem (learning and predicting
user’s annotation preferences), evaluation is commonly performed online,
focused on utility and usefulness, and measured using a training set and a
test set.

6.4.1 Evaluation approach

Our evaluation combines both the information-retrieval and the machine-
learning approach: we show both precision and recall ratings and evaluate
our approach using training/testing datasets through a commonly applied
technique of evaluating prediction of deleted values from existing data [16].

Because the distribution of data can alter the performance of the al-
gorithms quite severely, we evaluated on five existing RDF datasets: a we-
bcrawl3 of arbitrary RDF, the Mindswap research group4, a FOAF dataset5,
a terror dataset6 augmented with terrorist data, and the ontoworld.org Se-
mantic Wiki7. These datasets have differing characteristics, as shown in
Table 6.3: both large and small, with homogeneous and heterogeneous data,
and both highly structured and highly unstructured distribution. Figure 6.4

3http://www.activerdf.org/webcrawl_10k.nt
4http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf
5http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf
6http://reliant.teknowledge.com/DAML/TerroristActs.owl
7http://ontoworld.org/RDF/

http://www.activerdf.org/webcrawl_10k.nt
http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf
http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf
http://reliant.teknowledge.com/DAML/TerroristActs.owl
http://ontoworld.org/RDF/

6. Collaborative Annotations
6.4. Evaluation 50

dataset classes resources triples
webcrawl 2 112 6766
mindpeople 14 273 1081
foaf 4 3123 10020
terror 25 1553 16632
ontoworld 42 4467 28593

Table 6.3: Evaluation datasets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

re
la

tiv
e

fr
eq

ue
nc

y

predicates / resource

Terror
FOAF

Webcrawl
Ontoworld

Mindpeople

Figure 6.4: Distribution of the number of predicates per resource.

shows the relative distribution of the number of predicates per resource. It
shows that resources from the terror dataset in almost all cases have eleven
or twelve predicates. Resources from other datasets have usually far less
predicates per resource: Those from the ontoworld dataset have mainly four
or five predicates, whilst resources from the webcrawl dataset usually have
up to three, those from the mindpeople dataset usually up to six predicates.
Resources from the FOAF dataset have one or three predicates. All datasets
besides the terror dataset have very few resources that have more than 20
predicates. This is not printed in the plot to preserve readability. Table A
shows all absolute frequencies of predicates per resource.

Our primary evaluation technique is prediction of deleted values: we
pick a random resource from the dataset as a candidate for which further
predicates should be suggested. We then randomly remove one ore more

6. Collaborative Annotations
6.4. Evaluation 51

statements about this candidate and analyse if and at which rank position
the removed predicates are re-suggested. Repeated over n random resources
this yields the average re-suggestion rate (how often was the deleted predi-
cate re-suggested), the empty suggestion rate (how often were no suggestions
given), and the average rank of the re-suggested predicate. Since in practise
not all suggestions can be displayed or will be considered by the user, we
also show how many of the predicates were re-suggested within the top-k of
suggestions.

Secondly, we measure suggestion precision (how many suggestions are
valid) and recall (how many valid suggestions have we missed) based on
the schema definition: we define “valid” predicates as those predicates that,
according to the schema, fall within the domain of the selected candidate.
For recall computation, we consider only predicates that are actually used
in the dataset; since the algorithm considers only instance data, unused
predicates are unattainable.

6.4.2 Results

All tests were run on an AMD Opteron 1993MHz machine with 2GB of
RAM. The similarity algorithm was run 300 times over five random samples
(n=100, n=150, n=200, n=250, n=300) since its performance prevented us
from using the full datasets; the co-occurrence algorithm was run 20.000
times over the complete datasets. In each run, we randomly selected a
resource and deleted between one and ten of its existing predicates. We
then let the algorithms suggest additional predicates and compare these to
the randomly deleted predicates.

We first show the results of the two primary algorithms for each dataset:
table 6.4 shows the results of the classification-based algorithm, table 6.5
the results of the co-occurrence-based algorithm. The tables show, for each
dataset and for all datasets combined, the re-suggestion rate, empty sugges-
tion rate and average rank. It also shows the re-suggestion rate when only
considering the top-k results, and the precision, recall, and the F1-measure
for each algorithm.

We can see that in general the co-occurrence performs better than any of
the classification-based variants, especially when looking at the top-5 results.
We can see that the co-occurrence algorithm has very high precision (100%
on average). The co-occurrence algorithm has a slightly lower recall than the
classification-based ones, due to the intersection of candidates which results
in only high-confidence candidates. The F1-measure (harmonic mean of
precision and recall) shows that co-occurrence has the highest quality over
all datasets.

Table 6.6 shows (again) the results for the primary algorithms and then
lists the results for each classification variant, averaged over all five datasets.
We see that using resemblance instead of containment yields very low re-

6. Collaborative Annotations
6.4. Evaluation 52

dataset resugg. empty rank top-5 top-10 top-20
webcrawl 0.95 0.04 1.06 0.94 0.94 0.94
mindpeople 0.80 0.19 1.30 0.79 0.80 0.80
foaf 0.92 0.06 1.30 0.92 0.93 0.93
terror 0.98 0.02 1.10 0.97 0.97 0.98
ontoworld 0.85 0.13 1.39 0.84 0.84 0.85
average 0.90 0.08 1.22 0.89 0.90 0.90

dataset prec. recall F1

webcrawl 0.96 0.73 0.83
mindpeople 0.81 0.83 0.83
foaf 0.94 0.80 0.87
terror 0.98 0.91 0.95
ontoworld 0.87 0.72 0.79
average 0.92 0.80 0.85

Table 6.4: Results per dataset for classification-based algorithm

dataset resugg. empty rank top-5 top-10 top-20
webcrawl 1.00 0.00 1.18 0.99 0.99 1.00
mindpeople 1.00 0.00 1.23 1.00 1.00 1.00
foaf 1.00 0.00 1.51 0.95 1.00 1.00
terror 1.00 0.00 1.15 0.98 1.00 1.00
ontoworld 1.00 0.00 1.14 0.98 1.00 1.00
average 1.00 0.00 1.24 0.98 1.00 1.00

dataset prec. recall F1

webcrawl 1.00 0.74 0.85
mindpeople 1.00 0.76 0.87
foaf 1.00 0.59 0.74
terror 1.00 0.95 0.97
ontoworld 1.00 0.78 0.88
average 1.00 0.77 0.87

Table 6.5: Results per dataset for co-occurrence-based algorithm

6. Collaborative Annotations
6.4. Evaluation 53

algorithm resugg. empty rank top-5 top-10 top-20
co-occurrence 1.00 0.00 1.24 0.98 1.00 1.00
similarity (default) 0.90 0.08 1.22 0.89 0.90 0.90
resemblance (sr) 0.10 0.86 1.01 0.11 0.11 0.11
similarity weigh (ws) 0.90 0.09 1.24 0.89 0.90 0.90
count predicates (fp

s) 0.91 0.08 1.48 0.89 0.90 0.91
threshold (st=0.8) 0.93 0.06 1.29 0.91 0.92 0.93

algorithm prec. recall F1

co-occurrence 1.00 0.77 0.87
similarity (default) 0.92 0.80 0.85
resemblance (sr) 0.14 0.99 0.24
similarity weigh (ws) 0.91 0.80 0.85
count predicates (fp

s) 0.92 0.80 0.85
threshold (st=0.8) 0.94 0.79 0.86

Table 6.6: Results of algorithm variants (averaged over all datasets)

sults, which is most probably due to a too high threshold value. The other
variations do not seem to affect the results much.

Figure B.1 shows the F1-measure as a function of the number of predi-
cates per resource for each dataset separately. It reveals that more predicates
per resource improve the suggestion quality of the co-occurrence-based al-
gorithm in terms of F1-measure. But even for few predicates the algorithm
performs reasonable well. The performance varies @@merklich between dif-
ferent datasets: while the F1-measure for most datasets is always above 0.8,
it is almost always below 0.8 for the FOAF dataset. These variations also
show up in figure B.2 and B.3, which show the average rank and the top-k
recall for different number of predicates per resource (for the co-occurrence-
based algorithm). These plots not only show if a predicate is re-suggested
but also at which position it is suggested. Figure B.3 reveals that almost all
(more than 93 %) removed predicates appear in the first ten suggestions.

Figures B.4, B.5 and B.6 show F1-measure, top-k re-suggestion rate and
average rank as functions of the sampling size for the similarity-based algo-
rithm. We used containment as the similarity metric (as defined in equa-
tion (6.1)), no weighting of resources (defined in equation (6.9)) and we
count resources instead of predicates (equation (6.3)) for this plots. They
reveal that for the F1-measure, a sample size of 100 resources seems to be
sufficient. For all datasets, the F1-measure is nearly constant. The average
rank and the top-k re-suggestions, who give a more precise insight about the
suggestor, show that for all datasets, the performance does not improve sig-
nificantly when using more than 250 resources. Only the top-k re-suggestion
rate for the webcrawl dataset indicate a visible improvement when using 300

6. Collaborative Annotations
6.4. Evaluation 54

algorithm n=100 n=150 n=200 n=250 n=300
sim. (rdflite) 1.64s 4.02s 8.51s 15.10s 30.22s
sim. (Sesame) 0.71s 1.40s 2.74s 4.33s 7.88s
co-occ. (view) 0.63s 0.78s 1.46s 1.00s 0.93s
co-occ. (constr.) 0.21s 0.27s 0.46s 0.47s 0.70s
co-occ. (query) 0.01s 0.01s 0.01s 0.01s 0.01s

algorithm n=1555 n=3123 n=4467
sim. (rdflite) – – –
sim. (Sesame) – – –
co-occ. (view) 7.72s 9.65s 10.10s
co-occ. (constr.) 2.73s 4.71s 6.34s
co-occ. (query) 0.01s 0.01s 0.01s

Table 6.7: Runtime performance with n resources

instead of 250 resources.
Finally, Table 6.7 shows the performance times for the algorithms (only

one classification variant is shown since runtime is similar for all). Figure 6.5
shows two graphs for these results; the left graph is zoomed for up to 300
resources, the right graph shows the full results.

Timing for the co-occurrence algorithm is divided in matrix construction
and query answering. We evaluated the classification on two different data
stores, rdflite and Sesame8, to evaluate scaling independent of a particular
data store implementation. We can see that the classification algorithm
scales quadratic, which is due to the linear lookup times of the used data
stores, although the Sesame data store performs much better than rdflite.

Both variants of the co-occurrence algorithm perform well and scale lin-
early. The materialised co-occurrence implementation performs better than
the view-based, which is due to the fact that the sqlite database does not
support view materialisation; as mentioned earlier, both approaches have
their advantages.

The classification algorithm was too slow to include tests with more than
300 resources but that was again due to data lookups on the underlying
data store: the algorithms themselves scale linearly when ignoring data-
access. The materialised co-occurrence implementation shows that we can
circumvent data access, leading to very good performance, without requiring
large memory space.

8http://www.openrdf.org

http://www.openrdf.org

6. Collaborative Annotations
6.5. Related Work 55

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300

tim
e

(s
)

resources

cooc. constr.
cooc view

similarity (rdflite)
similarity (Sesame)

 0 1000 2000 3000 4000 5000

resources

Figure 6.5: Runtime performance

6.5 Related Work

Annotation tools such as OntoMat [13] support semi-automatic annotation
of documents; they suggest semantic annotation based on natural language
analysis of the annotated resources, but do not take existing semantic de-
scriptions into account. Annotea [19] supports collaborative annotations but
annotations are made manually without a suggestion mechanism. Semantic
Wikis such as SemperWiki [30] or Semantic MediaWiki [38] allow arbitrary
Semantic Web authoring but do not guide users in selecting appropriate
terminology.

Automatic schema mapping techniques [31] consider a similar problem
(automatically finding relations between elements of a schema) but typically
operate on class-level as opposed to instance level and use e.g. concept cor-
relation to unify schema elements [26] whereas we try to discover combined
usage patterns of predicates.

Our co-occurrence algorithm is based on association rule mining [2] but
our techniques for memory conservation differ: [2] focus on advanced prun-
ing techniques, whereas we approximate n-ary interdependencies using pair-
wise binary relations (resulting in a much simplified implementation). Fur-
thermore, our technique allows online processing with incremental updates,
whereas their algorithms are iterative and need to run over the complete
database.

6. Collaborative Annotations
6.6. Conclusion 56

6.6 Conclusion

We have discussed the problem of choosing vocabulary during Semantic
Web data entry; a crucial bottleneck, since only through shared vocabularies
can meaning be established. We introduced two algorithms for suggesting
possible predicates based on statistical data analysis.

The first algorithm is based on a simple intuitive principle of resource
classification: we suggest predicates from similar resources. We have dis-
cussed parametric variations that differ in the definition of similarity. We
showed that the quality is good (F1 : 85%) and that variations in similarity
computation do not lead to much better results.

The second algorithm approximates resource similarity through pair-
wise predicate co-occurrence, treating predicate occurrences as independent
events (which they are not). This simplifies computation and allows for
memory-efficient materialisation, while still resulting in high-quality sugges-
tions (F1 : 87%). Runtime performance of the co-occurrence algorithm is
good, scales linearly with the size of the dataset, and is constant in the
presence of materialisation.

We conclude that suggesting predicates based on resource similarity
works well and that, for this task, similarity based on outgoing arcs seems a
“good-enough” metric. Seeing that co-occurrence suggestion quality is even
better than in the classification algorithm, our second hypothesis on simi-
larity approximation using predicate co-occurrence seems to hold as well.

57

Chapter 7

Conclusion

We presented different techniques for simplifying the creation of semantic
annotations in text, with a focus on semantic wikis. They address different
facets of of wiki authoring in general as well as semantic authoring.

The first approach tackles the problem of heterogeneous wiki markup
languages. It provides an architecture for storing wiki content in an markup
independent manner so that each user of a wiki can use his favourite wiki
markup syntax without having to adopt to wiki specific syntaxes.

The next approach is the integration of existing metadata that already
exists on the user’s desktop environment. It allows reuse of metadata from
Word-, Excel and PDF documents, from e-mail and personal information
management applications. Links between contacts in a personal informa-
tion management application, e-mails and spreadsheets can be created in a
semantic desktop and allow a more natural task-oriented view on data than
a current application-oriented view.

Generating suggestions from natural language can help users to identify
possible annotations. The approach presented in this thesis demonstrates
the potential advantage that such a suggestion system might have, although
the results of the presented algorithm is not very meaningful. More advanced
natural language processing techniques should yield better results.

Generating suggestions that are based on existing annotations is use-
ful mainly in collaborative environments where users can benefit from the
knowledge of other users. The two presented algorithms perform quite well
(F1 = 0.85) in terms of quality, and the co-occurrence based algorithm also
in terms of time performance, where suggestions are generated in about 0.01
seconds. Given that results, the algorithm can be useful to suggest annota-
tions in semantic authoring environments, especially in those that are not
dedicated to a certain domain.

58

Appendix A

Tables

A. Tables
59

#
p
re

d
./

re
s.

fr
eq

.

1 53
2 55
3 41
4 35
5 25
6 29
7 9
8 9
9 5

10 4
11 2
14 1
15 1
18 1
20 1
21 1
26 1

(a) mindpeople

#
p
re

d
./

re
s.

fr
eq

.

1 11
2 25
3 14
4 7
5 4
6 2
7 4
9 2

10 1
11 2
14 2
15 1
17 2
18 1
21 2
22 1
24 1
28 1
30 1
32 1
36 1
37 2
38 2
44 1
49 1
50 1
74 1
81 1
85 1
88 2
90 2

106 1
114 1
115 1
185 1
230 1
231 1
267 1
303 1
942 2
943 1
949 1

(b) webcrawl

#
p
re

d
./

re
s.

fr
eq

.

2 3
4 2332
5 650
6 222
7 202
8 210
9 182

10 172
11 177
12 81
13 34
14 31
15 22
16 25
17 20
18 14
19 12
20 4
21 7
22 2
23 10
24 5
25 6
26 7
27 2
28 5
31 1
32 1
33 1
35 1
37 1
38 2
39 1
41 1
42 2
43 1
45 1
46 1
47 1
48 1
51 1
52 1
54 1
55 1
56 2
57 2
59 1
60 1
85 1
96 1

154 1
209 1

(c) ontoworld

#
p
re

d
./

re
s.

fr
eq

.

1 2
2 40
3 85
4 5
5 10
7 2
8 2
9 7

10 83
11 658
12 608
13 9
14 11
15 13
16 7
17 8
18 3

(d) terror

#
p
re

d
./

re
s.

fr
eq

.

1 1150
2 315
3 1228
4 140
5 48
6 30
7 41
8 24
9 10

10 8
11 6
12 13
13 7
14 13
15 2
16 11
17 5
18 9
19 7
20 5
21 4
22 3
23 5
24 1
25 5
26 1
27 4
28 4
29 1
30 1
31 1
34 3
37 2
38 2
39 1
40 3
41 1
42 1
44 4
48 1
77 1
86 1

115 1

(e) FOAF

Table A.1: Number of predicates per resource for each dataset.

60

Appendix B

Figures

B. Figures
61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
1

m
ea

su
re

re

so
ur

ce
s

predicates / resource

f1
resources

(a) Mindpeople dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
1

m
ea

su
re

re

so
ur

ce
s

predicates / resource

f1
resources

(b) Webcrawl dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
1

m
ea

su
re

re

so
ur

ce
s

predicates / resource

f1
resources

(c) FOAF dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
1

m
ea

su
re

re

so
ur

ce
s

predicates / resource

f1
resources

(d) Terror dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
1

m
ea

su
re

re

so
ur

ce
s

predicates / resource

f1
resources

(e) Ontoworld dataset

Figure B.1: F1 measure as a function of the number of predicates per re-
source for the co-occurrence based approach. The histogram shows the
number of resources with the specified number of predicates.

B. Figures
62

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 0 2 4 6 8 10 12 14 16

av
er

ag
e

ra
nk

predicates / resource

(a) Mindpeople dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 1 2 3 4 5 6 7 8 9

av
er

ag
e

ra
nk

predicates / resource

(b) Webcrawl dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 0 2 4 6 8 10 12 14 16 18

av
er

ag
e

ra
nk

predicates / resource

(c) FOAF dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 0 5 10 15 20 25

av
er

ag
e

ra
nk

predicates / resource

(d) Terror dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 0 5 10 15 20 25

av
er

ag
e

ra
nk

predicates / resource

(e) Ontoworld dataset

Figure B.2: Average rank as a function of the number of predicates per
resource for the co-occurrence based approach.

B. Figures
63

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

to
p-

k
ra

tio

predicates / resource

k = 5
k = 10
k = 20

(a) Mindpeople dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9
to

p-
k

ra
tio

predicates / resource

k = 5
k = 10
k = 20

(b) Webcrawl dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

to
p-

k
ra

tio

predicates / resource

k = 5
k = 10
k = 20

(c) FOAF dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

to
p-

k
ra

tio

predicates / resource

k = 5
k = 10
k = 20

(d) Terror dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

to
p-

k
ra

tio

predicates / resource

k = 5
k = 10
k = 20

(e) Ontoworld dataset

Figure B.3: Ratio of resuggested predicates in top 5, 10 and 20 suggestions
respectively for the co-occurrence based approach.

B. Figures
64

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

F
1

m
ea

su
re

sampling size (resources)

(a) Mindpeople dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300
F

1
m

ea
su

re

sampling size (resources)

(b) Webcrawl dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

F
1

m
ea

su
re

sampling size (resources)

(c) FOAF dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

F
1

m
ea

su
re

sampling size (resources)

(d) Terror dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

F
1

m
ea

su
re

sampling size (resources)

(e) Ontoworld dataset

Figure B.4: F1 measure as a function of the sampling size (i.e. number of
random resources) resource for the similarity-based approach.

B. Figures
65

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 100 150 200 250 300

av
er

ag
e

ra
nk

sampling size (resources)

(a) Mindpeople dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 100 150 200 250 300

av
er

ag
e

ra
nk

sampling size (resources)

(b) Webcrawl dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 100 150 200 250 300

av
er

ag
e

ra
nk

sampling size (resources)

(c) FOAF dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 100 150 200 250 300

av
er

ag
e

ra
nk

sampling size (resources)

(d) Terror dataset

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5
 100 150 200 250 300

av
er

ag
e

ra
nk

sampling size (resources)

(e) Ontoworld dataset

Figure B.5: Average rank as a function of the sampling size for the similarity-
based approach.

B. Figures
66

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

to
p-

k

sampling size (resources)

k = 5
k = 10
k = 20

(a) Mindpeople dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300
to

p-
k

sampling size (resources)

k = 5
k = 10
k = 20

(b) Webcrawl dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

to
p-

k

sampling size (resources)

k = 5
k = 10
k = 20

(c) FOAF dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

to
p-

k

sampling size (resources)

k = 5
k = 10
k = 20

(d) Terror dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300

to
p-

k

sampling size (resources)

k = 5
k = 10
k = 20

(e) Ontoworld dataset

Figure B.6: Ratio of resuggested predicates in top 5, 10 and 20 suggestions
respectively for the similarity based approach.

67

List of Figures

2.1 Semantic Web Stack . 4
2.2 Usual graphical representation of a RDF graph (left) and hy-

pergraph representation (right) of the same RDF graph. . . . 7
2.3 Example RDF graph representing a list collection. 8
2.4 Example RDF graph representing a bag container. 8
2.5 Architecture of ActiveRDF 12

3.1 Wiki Model . 18
3.2 Edit / View process of a standard wiki engine (without syntax

customisation) . 20
3.3 Edit / View process of a wiki engine with syntax customisation 20
3.4 Overview of the parsing process. Firstly, the so-called lexer

transforms a character sequence into a shorter token sequence.
Then the parser transforms this token sequence into a parse
tree. 23

3.5 Sample lexer run with input string and generated token se-
quence. Arrow marks the current lexer position. 23

3.6 Sample parser run with generated syntax tree and input token
stream (bottom). The arrow at the syntax tree marks the
current node, the arrow at the token stream marks the current
position in the token stream. 25

4.1 Architecture of ActiveRDF with adapters to desktop appli-
cations . 34

4.2 Mapping from Evolution contacts to RDF data. 35

5.1 User interface of the annotation extractor prototype 39

6.1 Example knowledge base . 41
6.2 Extended Knowledge Base . 46
6.3 Suggested predicates (bottom) for example resource (top) . . 49
6.4 Distribution of the number of predicates per resource. 50
6.5 Runtime performance . 55

LIST OF FIGURES
LIST OF FIGURES 68

B.1 F1 measure as a function of the number of predicates per re-
source for the co-occurrence based approach. The histogram
shows the number of resources with the specified number of
predicates. 61

B.2 Average rank as a function of the number of predicates per
resource for the co-occurrence based approach. 62

B.3 Ratio of resuggested predicates in top 5, 10 and 20 suggestions
respectively for the co-occurrence based approach. 63

B.4 F1 measure as a function of the sampling size (i.e. number of
random resources) resource for the similarity-based approach. 64

B.5 Average rank as a function of the sampling size for the similarity-
based approach. 65

B.6 Ratio of resuggested predicates in top 5, 10 and 20 suggestions
respectively for the similarity based approach. 66

69

List of Tables

6.1 Predicate occurrence and co-occurrence frequency 46
6.2 Relative co-occurrence ratios for Stefan 47
6.3 Evaluation datasets . 50
6.4 Results per dataset for classification-based algorithm 52
6.5 Results per dataset for co-occurrence-based algorithm 52
6.6 Results of algorithm variants (averaged over all datasets) . . 53
6.7 Runtime performance with n resources 54

A.1 Number of predicates per resource for each dataset. 59

70

Bibliography

[1] E. Adar, D. Kargar, and L. A. Stein. Haystack: per-user information
environments. In CIKM ’99: Proceedings of the eighth international
conference on Information and knowledge management, pp. 413–422.
ACM Press, New York, NY, USA, 1999.

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association
rules between sets of items in large databases. In SIGMOD ’93: Pro-
ceedings of the 1993 ACM SIGMOD international conference on Man-
agement of data, pp. 207–216. ACM Press, New York, NY, USA, 1993.

[3] J. Aycock and R. N. Horspool. Schrödinger’s token. Software - Practice
and Experience, 31:803–814, 2001.

[4] D. Beckett. Turtle - Terse RDF Triple Language. http://www.dajobe.
org/2004/01/turtle/, 2004.

[5] T. Berners-Lee. Notation 3 - a readable language for data on the web.
http://www.w3.org/DesignIssues/Notation3.html, 1998.

[6] T. Berners-Lee and M. Fischetti. Weaving the Web -The Original De-
sign and Ultimate Destiny of the World Wide Web by its Inventor.
Harper San Francisco, 1999.

[7] D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. Recommendation, W3C, February 2004.

[8] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
clustering of the web. In Selected papers from the sixth international
conference on World Wide Web, pp. 1157–1166. Elsevier Science Pub-
lishers Ltd., Essex, UK, 1997.

[9] F. Ciravegna. (LP)2, an adaptive algorithm for information extraction
from web-related texts. In IJCAI-2001 Workshop on Adaptive Text
Extraction and Mining. 2001.

[10] B. Davis, S. Handschuh, H. Cunningham, and V. Tablan. Further use of
controlled natural language for semantic annotation. In Proceedings of

http://www.dajobe.org/2004/01/turtle/
http://www.dajobe.org/2004/01/turtle/
http://www.w3.org/DesignIssues/Notation3.html

BIBLIOGRAPHY
BIBLIOGRAPHY 71

the 1st International Workshop on Applications and Business Aspects
of the Semantic Web (SEBIZ 2006). 2006.

[11] D. Dhyani, W. K. Ng, and S. S. Bhowmick. A survey of web metrics.
ACM Comput. Surv., 34(4):469–503, 2002.

[12] D. Fensel, H. Lausen, A. Polleres, M. Stollberg, et al. Enabling Semantic
Web Services. Springer, Berlin, October 2006.

[13] S. Handschuh. Creating Ontology-based Metadata by Annotation for the
Semantic Web. Ph.D. thesis, University of Karlsruhe, 2005.

[14] C. Hayes, P. Massa, P. Avesani, and P. Cunningham. An on-line eval-
uation framework for recommender systems. In Workshop on Person-
alization and Recommendation in E-Commerce. 2002.

[15] J. Hayes and C. Gutierrez. Bipartite graphs as intermediate model for
RDF. In Third International Semantic Web Conference (ISWC2004),
vol. 3298 of Lecture Notes in Computer Science, pp. 47 – 61. Springer-
Verlag, Hiroshima, Japan, November 2004.

[16] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Eval-
uating collaborative filtering recommender systems. ACM Trans. Inf.
Syst., 22(1):5–53, 2004.

[17] I. Herman. W3C Semantic Web Activity. http://www.w3.org/2001/
sw/.

[18] M. A. W. Houtsma and A. N. Swami. Set-oriented mining for as-
sociation rules in relational databases. In ICDE ’95: Proceedings of
the Eleventh International Conference on Data Engineering, pp. 25–33.
IEEE Computer Society, Washington, DC, USA, 1995.

[19] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea:
An open RDF infrastructure for shared web annotations. In WWW
Conf., pp. 623–632. 2001.

[20] G. Klyne and J. J. Carroll. Resource description framework (RDF):
Concepts and abstract syntax. Recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[21] B. Lund, T. Hammond, M. Flack, and T. Hannay. Social Bookmarking
Tools (II): A Case Study - Connotea. D-Lib Magazine, 11(4), April
2005.

[22] A. Maedche and S. Staab. Semi-automatic engineering of ontologies
from text. In Proceedings of the 12th Internal Conference on Software
and Knowledge Engineering. Chicago, USA. July 2000.

http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

BIBLIOGRAPHY
BIBLIOGRAPHY 72

[23] F. Manola and E. Miller. RDF primer. Recommenda-
tion, W3C, February 2004. http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/.

[24] C. Marlow, M. Naaman, D. Boyd, and M. Davis. HT06, tagging pa-
per, taxonomy, flickr, academic article, to read. In HYPERTEXT ’06:
Proceedings of the seventeenth conference on Hypertext and hypermedia,
pp. 31–40. ACM Press, New York, NY, USA, 2006.

[25] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage Overview. Recommendation, W3C, February 2004. http:
//www.w3.org/TR/2004/REC-owl-features-20040210/.

[26] N. F. Noy and M. A. Musen. Prompt: Algorithm and tool for auto-
mated ontology merging and alignment. In Proceedings of the Seven-
teenth National Conference on Artificial Intelligence and Twelfth Con-
ference on Innovative Applications of Artificial Intelligence, pp. 450–
455. AAAI Press / The MIT Press, 2000.

[27] E. Oren. SemperWiki: a semantic personal Wiki. In Semantic Desktop
(ISWC). Nov. 2005.

[28] E. Oren, J. G. Breslin, and S. Decker. How semantics make better
wikis. In WWW (poster). May 2006.

[29] E. Oren, R. Delbru, S. Gerke, A. Haller, et al. ActiveRDF: Object-
oriented semantic web programming. In Proceedings of the International
World-Wide Web Conference. May 2007.

[30] E. Oren, M. Völkel, J. G. Breslin, and S. Decker. Semantic wikis for
personal knowledge management. In DEXA. Sep. 2006.

[31] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350, 2001.

[32] P. Resnick and H. R. Varian. Recommender systems. Comm. of the
ACM, 40(3):56–58, 1997.

[33] L. Sauermann and S. Schwarz. Gnowsis adapter framework: Treat-
ing structured data sources as virtual RDF graphs. In International
Semantic Web Conference, pp. 1016–1028. 2005.

[34] S. Schaffert. Ikewiki: A semantic wiki for collaborative knowledge man-
agement. wetice, 0:388–396, 2006.

[35] S. Soderland. Learning information extraction rules for semi-structured
and free text. Machine Learning, 34(1-3):233–272, 1999.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

BIBLIOGRAPHY
BIBLIOGRAPHY 73

[36] R. Srikant and R. Agrawal. Mining generalized association rules. In
VLDB ’95: Proceedings of the 21th International Conference on Very
Large Data Bases, pp. 407–419. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1995.

[37] A. B. Tassilo Pellegrino. Semantic Web. Wege zur vernetzten Wissens-
gesellschaft. Springer, Berlin, 2006.

[38] M. Völkel, M. Krötzsch, D. Vrandevic, H. Haller, et al. Semantic
wikipedia. In WWW. 2006.

[39] Wikipedia. Semantic Web. http://en.wikipedia.org/wiki/
Semantic_Web, January 2007.

http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Semantic_Web

Erklärung

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgaben-
steller bereits bekannte Hilfe selbständig angefertigt, alle benutzten Hilfsmit-
tel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen
wurde.

Karlsruhe, den 1. Juni 2007

	Introduction
	Background
	Semantic Web and the role of RDF
	URI
	RDF
	RDF Schema

	Semantic Wikis
	ActiveRDF
	Architecture
	Usage

	Personalised Wiki Syntax
	Semantic Wiki Data Model
	Wiki Engine Architecture
	Parsing Wiki syntax
	Wiki Syntax
	Parsing Process
	Lexical Analysis
	Parser

	Reusing Desktop Data
	Overview
	Related Work
	Architecture
	Prototype Implementation

	Annotation Extraction
	Related Work
	Implementation
	Outlook

	Collaborative Annotations
	Classification-based algorithm
	Preliminaries
	Classification step
	Ranking step
	Qualitative results
	Performance

	Co-occurrence-based algorithm
	Precomputation step
	Suggestion step

	Implementation
	Example suggestions

	Evaluation
	Evaluation approach
	Results

	Related Work
	Conclusion

	Conclusion
	Tables
	Figures

